В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.


Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.


Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.


  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.


Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется U П пилообразной формы, поступающее на вход компаратора К ШИМ. Ко второму входу этого устройства подводится сигнал U УС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности U П (опорное напряжение) и U РС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал U УС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (U OUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала U РС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.



Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:



Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.


Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 – 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 – микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Очень часто ко мне обращаются мои клиенты с проблемой, что не работает блок питания на каком-либо устройстве. Блоки питания я делю на две категории: «простые» и «сложные». К «простым» я отношу антенные, блоки питания от каких-либо игровых приставок, от переносных телевизоров и другие подобные, которые непосредственно включаются в розетку. Одним словом – выносные, т.е. отдельно от основного устройства. «Сложные» в моей схеме распределения – это блоки питания, которые стоят в самом устройстве. Ну, «сложные» мы, пока оставим в покое, а вот о «простых» поговорим.

Существует не очень много причин выхода из строя выносных блоков питания . Перечислю их все:

  1. Обрыв в обмотках трансформатора (первичная и вторичная);

  2. Короткое замыкание в обмотках трансформатора;

  3. Выход из строя выпрямителя напряжения (диодный мост, конденсатор, стабилизатор и связанные с ним радиоэлементы).

Если, при поломки блока, на его выходе напряжения отсутствуют совсем, то, скорее всего, причина в трансформаторе. Если же на выходе присутствует заниженное напряжение, то дело в выпрямители. Проверить трансформатор можно измерив сопротивление на его обмотках. На первичной обмотке сопротивление должно быть более 1 кОма, на вторичной или вторичных – менее 1 кОма. В некоторых блоках питания , на первичной обмотке, под обёрткой, которой оборачивается сама обмотка, ставится предохранитель. Чтобы до него добраться, нужно разорвать обёртку на этой обмотке. Чаще всего, такой механизм защиты присутствует в трансформаторах китайского производства. Так что если первичная обмотка не прозванивается, то проверьте, может быть на ней установлен предохранитель.

С трансформатором разобрались. Теперь перейдём к проверке выпрямителя напряжения и его компонентам. Самая распространённая поломка в блоках питания – это выход из строя одного или нескольких элементов, из которых, собственно, и состоит выпрямитель напряжения. Вот эти причины мы с вами и будем обсуждать в данной статье. Будем производить ремонт блока питания своими руками .

Рассмотрим это на примере антенного блока питания с выходным напряжением 12 В .

На данном блоке питания заниженное выходное напряжение: вместо положенных 12 Вольт , он выдаёт 10 Вольт . Итак приступим к устранению данной проблемы. Для начала, естественно, нужно разобрать сам блок. После того, как мы убедимся, что трансформатор в данном устройстве цел, переходим к проверке элементов выпрямителя.

В первую очередь проверяем диодный мост – это четыре диода, к которым идут контакты от вторичной обмотке трансформатора. Как проверять диоды я рассказал в видео, которое вы найдёте в конце этой статьи. В нашем блоке диодный мост цел. Теперь смотрим на конденсатор: бывает, что конденсаторы «вздуваются». У нас конденсатор не «вздутый». Если диодный мост и конденсаторы целы, осматриваем плату выпрямителя на предмет почернения или обгорания элементов, стоящих на плате.

Если визуально всё в порядке, то смело выпаиваем стабилизатор напряжения. В данном выпрямители стоит стабилизатор напряжения 12 Вольт – 78L12. Почти всегда именно этот элемент выходит из строя. Перед извлечением этой детали из платы, запомните как была эта деталь установлена на плате, чтобы при замене не перепутать полярность. Вместе со стабилизатором рекомендую заменить также конденсатор, это для надёжности, так как чаще всего он тоже выходит из строя.

После замены этих деталей, проверьте – не отпаялись ли в процессе ремонта от контактов проводки, идущие от трансформатора.

Если всё хорошо, собираем наш . Замеры, произведённые после нашего ремонта данного блока питания, показали на выходе напряжение 12 Вольт , что, в общем-то, нам и требовалось. Всё!

Сервисный центр Комплэйс выполняет ремонт импульсных блоков питания в самых разных устройствах.

Схема импульсного блока питания

Импульсные блоки питания используются в 90% электронных устройств. Но для нужно знать основные принципы схемотехники. Поэтому приведем схему типичного импульсного блока питания.

Работа импульсного блока питания

Первичная цепь импульсного блока питания

Первичная цепь схемы блока питания расположена до импульсного ферритового трансформатора.

На входе блока расположен предохранитель.

Затем стоит фильтр CLC, причем катушка используется для подавления синфазных помех. Вслед за фильтром располагается схема выпрямления на основе диодного моста и электролитического конденсатора. Часто для защиты схемы от коротких высоковольтных импульсов после предохранителя параллельно входному конденсатору устанавливается варистор. Сопротивление варистора резко падает при повышенном напряжении. Поэтому весь избыточный ток идет через него в предохранитель, который сгорает, выключая входную цепь.

Защитный диод D0 нужен для того, чтобы предохранить схему блока питания, если сгорит диодный мост. Диод не даст пройти отрицательному напряжению в основную схему, потому, что откроется и сгорит предохранитель.

За диодом стоит варистор на 4-5 ом для сглаживания резких скачков потребления тока в момент включения и первоначальной зарядки конденсатора C1.

Активные элементы первичной цепи: коммутационный транзистор Q1 с ШИМ (широтно импульсным модулятором) контроллером управления. Транзистор преобразует постоянное выпрямленное напряжение 310В в переменное, которое преобразуется трансформатором Т1 на вторичной обмотке в пониженное выходное.

И еще — для питания ШИМ-регулятора используется выпрямленное напряжение, снятое с дополнительной обмотки трансформатора.

Работа вторичной цепи импульсного блока питания

В выходной цепи после трансформатора стоит либо диодный мост, либо 1 диод и CLC фильтр, состоящий из электролитических конденсаторов и дросселя.

Для стабилизации выходного напряжения используется оптическая обратная связь. Она позволяет развязать выходное и входное напряжение гальванически. В качестве исполнительных элементов обратной связи используется оптопара OC1 и интегральный стабилизатор TL431. Когда выходное напряжение после выпрямления превышает напряжение стабилизатора TL431 включается фотодиод, который включает фототранзистор, управляющий драйвером ШИМ. Регулятор TL431 снижает скважность импульсов или вообще останавливается, пока напряжение не снизится до порогового.

Ремонт импульсных блоков питания

Неисправности импульсных блоков питания, ремонт

Исходя из схемы импульсного блока питания перейдем к ее ремонту. Возможные неисправности:

  1. Если сгорел варистор и предохранитель на входе или VCR1, то ищем дальше. Потому, что они так просто не горят.
  2. Сгорел диодный мост. Обычно это микросхема. Если есть защитный диод, то и он обычно горит. Нужна их замена.
  3. Испорчен конденсатор C1 на 400В. Редко, но бывает. Часто его неисправность можно выявить по внешнему виду, но не всегда.
  4. Если сгорел переключающий транзистор, то выпаиваем и проверяем его. При неисправности требуется замена.
  5. Если сгорел ШИМ регулятор, то меняем его.
  6. Замыкание или обрыв обмоток трансформатора. Шансы на ремонт минимальны.
  7. Неисправность оптопары — крайне редкий случай.
  8. Неисправность стабилизатора TL431. Для диагностики замеряем сопротивление.
  9. Если КЗ в конденсаторах на выходе блока питания, то выпаиваем и диагностируем тестером.

Примеры ремонта импульсных блоков питания

Например, рассмотрим ремонт импульсного блока питания на несколько напряжений.

Неисправность заключалась в в отсутствии на выходе блока выходных напряжений.

Например, в одном блоке питания были неисправны два конденсатора 1 и 2 в первичной цепи. Но они не были вздутыми.

На втором не работал ШИМ контроллер.

На вид все конденсаторы на снимке рабочие, но внутреннее сопротивление оказалось большое. Более того, внутреннее сопротивление ESR конденсатора 2 в кружке было в несколько раз выше номинального. Этот конденсатор стоит в цепи обвязки ШИМ регулятора, поэтому регулятор не работал. После замены этого конденсатора ШИМ заработал и работоспособность блока питания восстановилась.

Цены на ремонт импульсных БП

Цены на ремонт импульсных блоков питания очень отличаются. Дело в том, что существует очень много электрических схем, по которым по которым делают импульсные блоки питания. Особенно много отличий в схемах с PFC (Power Factor Correction, иначе коэффициент коррекции мощности), которые повышают КПД. Самое важное — есть ли схема на сгоревший блок питания. Если такая электрическая схема есть в доступе, то ремонт блока питания существенно упрощается.

Цена ремонта колеблется от 1000 рублей для простых блоков питания до 10000 рублей для сложных дорогих БП. Цена определяется сложностью блока питания, а также сколько элементов в нем сгорело. Если все новые БП одинаковые, то все неисправности разные.

Например, в одном сложном блоке питания сгорело 10 элементов и 3 дорожки. Тем не менее его удалось восстановить, причем цена ремонта составила 8000 рублей. Сам прибор стоит порядка 1 000 000 рублей. Таких блоков питания в России не продают.

Устройство китайских зарядных устройств для ноутбуков описано .

В любой электронной системе, работающей от импульсного блока питания, наступает неприятный момент, когда приходится сталкиваться с проблемным выходом его из строя. К сожалению, импульсные радиоэлементы или блоки, как показывает практика, не столь долговечны, как того хотелось бы, поэтому требуют к себе более пристального внимания, а зачастую просто замены или ремонта.

В последнее время многие производители импульсных блоков питания решают вопрос ремонта или замены своего «детища» кардинально. Они просто делают монолитные импульсные блоки, не оставляя практически никаких вариантов начинающим радиолюбителям для их ремонта. Но если вы стали обладателем разборного импульсного блока питания , то в умелых руках и владея определёнными знаниями и элементарными навыками замены радиоэлементов, вы легко сможете самостоятельно продлить срок его службы.

Общие принципы работы импульсных блоков питания

Давайте сначала разберёмся с общим принципом работы любого импульсного блока питания. Тем более что основные рабочие функции и даже выходные напряжения для определённых моделей, которые необходимы для функционирования всей системы (будь то телевизор или другой вариант электронного устройства) у всех импульсников практически одинаковы. Различаются только индивидуальные схематические рисунки и соответственно применяемые радиоэлементы и их параметры. Но это уже не столь важно для понимания общего принципа его работы.

Для простых любителей или «чайников»: общий принцип работы импульсных блоков питания заключается в трансформации переменного напряжения , которое подаётся непосредственно из розетки 220 В в постоянные выходные напряжения для запуска и работы всех остальных блоков системы. Осуществляется такая трансформация с помощью соответствующих импульсных радиоэлементов. Основными из них являются импульсный трансформатор и транзистор, которые обеспечивают рабочее функционирование всех электропотоков. Для проведения ремонта нужно знать как запускается этот блок. А для начала проверить наличие входного рабочего напряжения, предохранитель, диодный мост и так далее.

Рабочий инструмент для проверки импульсных блоков питания

Для ремонта импульсного блока питания, вам потребуется обычный, даже простенький мультиметр , который проверит постоянное и переменное напряжение. С помощью функций омметра, прозвонив сопротивления радиодеталей, вы также можете быстро проверить исправность предохранителей, дросселей, рабочее сопротивление резисторов, «бочонки» электролитических конденсаторов. А также транзисторные диодные переходы или диодные мосты и прочие виды радиоэлементов и их связи в любой электронной схеме (иногда даже не выпаивая их полностью).

Проверять импульсный блок сначала нужно в «холодном» режиме. В этом случае прозваниваются все визуально подозрительные (вздувшиеся или горелые радиодетали), которые поддаются «холодной» проверке без подачи рабочего напряжения. Визуально испорченные радиодетали следует немедленно заменить на новые. Если облезла маркировка воспользуйтесь принципиальной схемой или найдите соответствующий вариант в интернете.

Замену производить нужно только с разрешающим допуском по определённым параметрам , который вы можете найти для любого радиоэлемента в специализированной литературе или в прилагающейся к прибору схеме. Это безопасный метод, потому что импульсные блоки питания очень коварны своими электрическими разрядами.

Не забывайте и то, что при обнаружении нерабочего радиоэлемента , нужно проверить соседние с ним детали. Зачастую резкие перепады напряжения при сгорании одного элемента, влекут за собой выход из строя соседних. В процессе практической деятельности по ремонту определённых моделей вы будете логически вычислять неисправность исходя из результата состояния ремонтируемого объекта. К примеру, даже по определённому запаху (запах тухлых яиц при выходе из строя электролита), при включении по монотонному звуку или треску в процессе работы блока и прочих дефектах, которые могут возникнуть в процессе работы любого электронного прибора.

В рабочем режиме проверка импульсного блока питания возможна только при нагрузке всей системы – не вздумайте отключить нагрузочные шины телевизора при проверке. Можно создать нагрузку искусственным путём с помощью подключения специально собранного нагрузочного эквивалента.

Основные неисправности и методы проверки импульсных блоков питания

Как включить и выставить определённый режим мультиметра каждый может разобраться сам, даже школьник. Перед началом проверки убедитесь в работоспособности сетевого кабеля или выключателя, которые можно определить визуально или с помощью мультиметра. Не забудьте при любой проверке разрядить электролитические конденсаторы. Они накапливают и удерживают довольно приличный заряд на протяжении определённого времени, даже после выключения всей системы.

Возможные причины выхода из строя импульсного блока питания и необходимая замена нерабочих радиоэлементов:

  1. При сгорании предохранителя весь блок обесточивается. Заменить перегоревший контакт очень просто. Используйте обычный проволочный волосок, который наматывается поверх предохранителя или припаивается непосредственно к его контактам. Необходимо учитывать толщину волоска, которая рассчитана на определённую силу тока. Иначе вы рискуете в последующем вывести из строя весь импульсный блок, если предохранитель не сработает.
  2. Если полностью отсутствует выходное напряжение, возможно, неисправен соответствующий конденсатор или дроссель, который нужно заменить или поменять обмотку. Для этого нужно размотать повреждённый провод и намотать новый с соответственным количеством витков и подходящим сечением. После чего самодельный дроссель впаивается на своё рабочее место.
  3. Проверить все диодные мосты и переходы. Как это сделать описано выше. Не забывайте при установке новых деталей производить самостоятельную, а главное, качественную пайку.

Самостоятельная и качественная пайка

Правильная и качественная пайка является одним из основополагающих навыков, которым должен овладеть любой начинающий радиолюбитель. От этого зависит конечный результат всего ремонта и срок дальнейшей эксплуатации отремонтированного прибора.

Основные этапы ремонта импульсных блоков питания

Возможные неисправности типовых импульсных блоков питания на примере телевизора или компьютера:

Неисправности импульсных блоков питания на 12 вольт

Сложность замены любого импульсного блока питания на 12 В заключается в поиске нужной модели, а они очень многообразны. Поэтому найти такой блок с нужным выходным напряжением и силой тока не всегда представляется возможным, если он быстро понадобился. Иногда проще, при незначительной поломке, восстановить его работоспособность самому. Вот некоторые советы для этого:

Надеемся, эта статья дала общее представление об устройстве импульсных блоков питания. А, возможно, даже и заинтересовала многих начинающих радиолюбителей, которые хотят повысить свои профессиональные навыки.

Видеокамеры, как и автомобили, сейчас уже перестали быть предметами роскоши и перешли в разряд необходимых приборов. Но, если сама видеокамера изготовлена качественно и выход её из строя без каких-либо внешних причин – явление нечастое, то с блоками питания к ним всё как раз наоборот – «горят» они с завидным постоянством. И если ЗУ от сотовых телефонов мы покупаем, не задумываясь, то приобретение блока питания на нужное напряжение и силу тока может вызвать некоторые проблемы.

Тем не менее, отказавший импульсный блок питания нередко можно восстановить самостоятельно.

На фото – неисправный импульсный блок питания, модель FC-2000. Выходное напряжение БП – 12 вольт при нагрузке до 2 А, что вполне достаточно для питания одной-двух видеокамер. После двух с половиной лет работы в круглосуточном режиме на его выходе напряжение пропало полностью.

Вскрыв корпус неисправного БП, мы обнаружим плату с установленными на ней деталями – среди них электролитический конденсатор ёмкостью от 10 до 47-68 мкФ и с рабочим напряжением 400-450 вольт; на его выводах даже спустя несколько минут остаётся достаточно большой заряд. Поэтому в первую очередь нужно закоротить его выводы через сопротивление номиналом в несколько кОм и мощностью выше 0,5Вт. Напрямую закорачивать выводы конденсатора нельзя, это может вывести его из строя. На фото в красном прямоугольнике – именно эта деталь. Поскольку донышко конденсатора вспучено, можно говорить о том, что первая неисправность обнаружена.

Кроме упомянутого выше конденсатора фильтра сетевого выпрямителя, проверке подлежат и такие детали, как предохранитель, выпрямительный мост (может быть установлен либо выпрямительный блок, либо четыре отдельных диода, как на фото) и транзисторный ключ – на фото они заключены в зелёные прямоугольники.

Рабочее напряжение нового конденсатора должно быть не ниже того, на которое был рассчитан заменяемый. Для проверки можно обойтись меньшей ёмкостью, но для обеспечения нормального режима работы блока питания этот параметр должен быть либо таким же, либо выше на одну позицию (т.е. ёмкость с 33 мкФ можно увеличить до 47 мкФ).

Поскольку в описываемом случае детали высоковольтного выпрямителя и транзистор оказались исправными, то подаём на его вход сетевое напряжение. Если же пришлось менять диоды или транзистор, первое включение БП следует делать через последовательно подключённую лампу накаливания мощностью 25-40 Вт – благодаря этому при наличии скрытых неисправностей величина протекающего по цепям первичного питания тока не окажется фатальной.

Подключаем к выводам вольтметр – напряжение в пределах нормы. Однако, подключив даже небольшую нагрузку, напряжение на выходе стало скачкообразно меняться от 5 до 11 вольт, что говорит о неисправности цепей стабилизации.

Дальнейшая проверка выявила неисправность ещё одного электролитического конденсатора, установленного в цепи оптрона PC 817.

Судя по фото, конденсатор потерял около 90 % своей ёмкости.

После установки новых деталей тщательно смываем ацетоном или спиртом остатки флюса (канифоли, паяльной пасты и т.п.), чтобы избежать утечек тока и возможного пробоя и выгорания материала самой платы.

Снова проверяем блок питания. На этот раз к его выводам подключена автомобильная лампа мощностью 21 Вт и током потребления около 2 ампер – БП рассчитан именно на такой номинальный рабочий ток. Как видно на фото, со своей задачей он справился на «отлично», лампочка ярко горит, к тому же удалось сэкономить 200-300 рублей и время, которое было бы потрачено на поиски нового импульсного блока питания.