Владельцы карбюраторных автомобилей не понаслышке знакомы с трудностями процесса регулировки зажигания. Обычно это делается на слух, что не очень удобно. Используя стробоскоп, это процесс можно облегчить. Однако промышленные устройства достаточно дорогие, поэтому многие изготавливают стробоскоп для зажигания своими руками.

Недостатки промышленных моделей

Промышленные устройства зачастую имеют определенные недостатки, из-за которых полезность прибора весьма сомнительна.

Для начала, цена на них бывает вполне существенной. Например, современные цифровые модели обойдутся автолюбителю в 1000 р. Более функциональные модели стоят уже от 1700. Продвинутые стробоскопы стоят порядка 5500 р. Нужно ли говорить, что стробоскоп автомобильный (своими руками сделанный) обойдется автолюбителю в 100-200 рублей.

Часто в заводских устройствах производитель применяет особо дорогую газоразрядную лампу. Лампа имеет определенный ресурс, а через некоторое время ее придется заменить. А это само по себе равносильно приобретению нового заводского устройства.

Почему стоит делать стробоскоп своими руками?

Недостатки заводских и технологичных устройств подталкивают автолюбителя к самостоятельному изготовлению этого устройства. Кроме того, намного дешевле по стоимости оснастить это оборудование светодиодами вместо дорогой лампы. В качестве источника диодов или донора подойдет обыкновенная лазерная указка или фонарик.

Остальные детали также обойдутся в копейки. Особых инструментов при этом не понадобится. Бюджет процесса изготовления стробоскопа составит не более 100 рублей.

Как сделать стробоскоп своими руками?

Схем и вариантов для изготовления существует огромное количество. Однако в большинстве все проекты по созданию этого гаджета похожи. Давайте посмотрим, что понадобится для сборки.

Нам понадобится простой транзистор КТ315. Его без труда можно найти в старом советском приемнике. Обозначение может слегка отличаться, но это не беда. Тиристор КУ112А можно без проблем добыть из блока питания старинного телевизора. Там же можно найти резисторы небольших размеров. Так как мы делаем светодиодный стробоскоп своими руками, то, естественно, понадобится светодиодный фонарь. Для этого лучше приобрести самый дешевый, из Китая. Кроме этого, нужно запастись конденсатором до 16 В любым низкочастотным диодом, маленьким реле на 12 А, проводами, крокодилами, экранированным проводом 0,5 м длиной, а также небольшим куском медного провода.

Собираем прибор

Схема небольшая, а разместить ее можно прямо в том самом китайском фонаре. Так, через отверстие в фонарике сзади желательно пропустить провода для питания устройства. На концах проводов лучше запаять крокодилы. В боковой стенке нужно проделать отверстие, если его уже не сделали китайцы. Через это отверстие будет проложен экранированный провод. На обратном конце необходимо заизолировать оплетку и припаять тот самый кусок медной проволоки к основной жиле провода. Это будет датчик.

Схема устройства и принцип работы

После подачи тока через провода питания конденсатор очень быстро зарядится через резистор. Когда будет достигнут определенный порог заряда, через резистор напряжение будет поступать на открывающийся контакт транзистора. Здесь сработает реле. Когда реле замкнется, оно создаст цепь из тиристора, светодиода и конденсатора. Затем через делитель импульс попадет на управляющий вывод тиристора. Далее тиристор откроется, а конденсатор разрядится на светодиоды. В результате стробоскоп, своими руками изготовленный, ярко вспыхнет.

Через резистор и тиристор базовыевывод транзистора соединяется с общим проводом. Из-за этого транзистор закроется, а реле отключится. Время свечения светодиодов увеличивается, так как контакт разрывается не сразу. Но контакт разорвется, а тиристор будет обесточен. Схема вернется в базовое положение, пока не поступит новый импульс.

Изменяя емкости конденсатора, можно менять время свечения. Если выбрать конденсатор большей емкости, то светодиодный стробоскоп, своими руками изготовленный, будет ярче и дольше светиться.

Прибор на микросхеме

Основной деталью этой несложной схемы является микросхема типа DD1. Это так называемый одновибратор 155АГ1. В этой схеме он запускается лишь от отрицательных импульсов. Управляющий сигнал поступит на транзистор КТ315, а он сформирует эти отрицательные импульсы. Резисторы 150 К ОМ, 1 К ОМ, 10 К ОМ, а также стабилитрон КС139 работают в качестве ограничителей амплитуды входящего сигнала с зажигания авто.

Конденсатор 0,1 мФ вместе с сопротивлением в 20 КОм зададут нужную длительность импульсов, которые будут сформированы микросхемой. При такой емкости конденсатора длительность импульсов будет примерно до 2 мс.

Затем с 6-й ножки микросхемы импульсы, которые к этому моменту будут синхронизированы с зажиганием машины, попадут на базовый вывод транзистора КТ 829. Он здесь в качестве ключа. Результат - это импульсный ток через светодиоды.

Как запитывается этот стробоскоп для авто? Своими руками нам необходимо провести пару проводов к клеммам автомобильного аккумулятора. Нужно обязательно следить за уровнем заряда АКБ.

Если вы верно соберете эту простую схему, то сразу же сможете увидеть, как работает устройство. Если вдруг яркости недостаточно, то это регулируется подбором соответствующего сопротивления.

В качестве корпуса для устройства можно использовать старый или китайский фонарик.

Еще одна схема стробоскопа

Данный стробоскоп на светодиодах, своими руками изготовленный по такому принципу, также можно запитать от автомобильного аккумулятора. Диоды позволят создать защиту от неправильной полярности. В качестве крепежа здесь применяется обычный крокодил. Его нужно прицепить на высоковольтный контакт первой свечи на моторе. Далее импульс пройдет через резисторы и конденсатор и придет на вход триггера. К тому моменту этот вход уже будет включен одновибратором.

До импульса одновибратор находится в обычном режиме. Прямой выход триггера имеет низкий уровень. Инверсный вход, соответственно - высокий. Конденсатор, присоединенный плюсом к инверсному выходу, зарядится через резистор.

Высокоуровневый импульс запускает одновибратор, что переключает триггер и служит для заряда конденсатора через резистор. Через 15 мс конденсатор полностью зарядится, а триггер переключится в обычный режим.

В итоге одновибратор отреагирует на это синхронной последовательностью прямоугольных импульсов длительностью примерно 15 мс. Длительность можно регулировать при помощи замены резистора и конденсатора.

Импульсы второй микросхемы составляют до 1,5 мс. На этот период открываются транзисторы, которые представляют собой электронный коммутатор. Затем через светодиоды протекает ток. По этому принципу работает стробоскоп для авто (своими руками изготовленный он был или нет, не имеет значения - оба устройства светят одинаково).

Ток, проходящий через светодиоды, гораздо больший, чем паспортный. Но, так как вспышки недолгие, то светодиоды не выйдут из строя. Яркости будет достаточно, чтобы использовать этот полезный прибор даже в дневное время.

Этот стробоскоп своими руками можно собрать в корпусе от все того же многострадального карманного фонарика.

Как работать с прибором?

Собрав по одной из приведенных схем устройство, можно просто и легко, а главное, точно настраивать зажигание на карбюраторных двигателях, проверять правильность работы свечей и катушек, контролировать работу регуляторов угла опережения.

Чтобы максимально правильно выставить зажигание, обычно исходят из того, что смесь зажигается за пару градусов до того, когда поршень придет в самую верхнюю точку. Этот угол называется "угол опережения". Когда обороты коленчатого вала растут, угол тоже должен увеличиваться. Так, этот угол выставляют на холостых оборотах, а затем необходимо проконтролировать правильность настройки на всех режимах работы агрегата.

Выставляем зажигание

Запускаем и прогреваем двигатель. Теперь запитываем наш стробоскоп на светодиодах и подключаем датчик. Сейчас нужно направить прибор на метку на корпусе ГРМ и отыскать метку на маховике. Если момент нарушен, то метки будут достаточно далеко друг от друга. Методом вращения корпуса ГРМ добейтесь совпадения меток. Когда вы нашли это положение, зафиксируйте трамблер.

Затем пора поднять обороты. Метки разойдутся, однако это вполне нормальная ситуация. Вот так проводится настройка зажигания с использованием стробоскопа.

Итак, мы выяснили, как изготавливается стробоскоп на светодиодах своими руками.

Наверняка многие из нас хотели бы иметь дома стробоскоп, чтобы украсить небольшую вечеринку и придать ей немного драйва. Как правило их делают на импульсных лампах, но к сожалению они довольно дорогие и имеют маленький ресурс.

Я решил заменить лампы на светодиоды, и с уверенностью скажу, что такой стробоскоп своими руками для дискотеки сможет изготовить даже начинающий радиолюбитель.

Сам стробоскоп собирается на 2-х печатных платах, на одной из них расположены светодиоды, а на второй - блок управления. Главной деталью в блоке управления является микросхема-таймер LM555.

Именно она генерирует импульсы, частота которых определяет то, как быстро будет мерцать стробоскоп, и регулируется переменным резистором. Я использовал 60 светодиодов, но можно использовать любое количество кратное трем (3, 6, 9 …).

В качестве блока питания подойдет любой источник от 6-ти до 12-ти вольт. У меня он работает от одной батарейки «Крона», но при желании можно подключить его к блоку питания 12 Вольт (для этого предусмотрен дополнительный разъем). В этом случае стробоскоп светит намного ярче.

Вот список радиодеталей, которые понадобятся при изготовлении стробоскопа:

  • Сверхъяркие светодиоды (белые, 5 мм) - 60 шт;
  • Микросхема-таймер 555;
  • Полевик IRFZ44N;
  • Переменный резистор 1 мОм;
  • Резистор 5,6 Ом (2 Вт);
  • Резистор 56 Ом;
  • Резистор 10 кОм;
  • Резистор 100 кОм;
  • Конденсатор 1 мкФ x 50 В;
  • Конденсатор 1000 мкФ x 16 В;
  • Диод 1N4148;

Корпусные детали и прочая мелочевка:

  • Пластиковый корпус 90×60×25 мм;
  • Оргстекло 90×60 мм;
  • Текстолит;
  • Стойки М4×22 мм (мама-мама) - 4 шт;
  • Стойки М4×10 мм (мама-папа) - 4 шт;
  • Винты для стоек М3×8 мм;
  • Батарейка «Крона» + ответный разъем для нее;
  • Разъем питания (штыревой);
  • Переключатель движковый (2 положения);

Схема и печатная плата были нарисованы в программе Eagle . Управляющая плата получилась небольшой, при желании её можно сделать еще меньше, используя SMD компоненты. Размеры платы со светодиодами - 87 на 57 мм.

(PDF, 62 Кб);
(PDF, 13 Кб);
(PDF, 48 Кб);
(PDF, 10 Кб);
(PDF, 47 Кб).




К сожалению я не делал фотографии в процессе пайки, но надеюсь что это не будет вам помехой. Вот несколько фотографий, на которых видно уже запаянные платы для стробоскопа.



После изготовления печатных плат и напайки на них радиоэлементов можно приступать к корпусированию.




Внутри корпуса пришлось срезать несколько пластиковых стоек, которые мешали.

Чтобы защитить светодиоды я использовал оргстекло, установив его на стойки (между оргстеклом и корпусом стробоскопа - 10 мм).



Теперь остается только вставить все разъемы, закрутить болты и стробоскоп своими руками для дискотеки готов!




Вот видео работы стробоскопа:

Примечание: Если вы захотите сделать цветной стробоскоп, можете использовать RGB светодиоды (что довольно дорого), либо вырезать различные светофильтры из цветного оргстекла.

Во многих схемах стробоскопов для определения точного момента зажигания используют лампы ИФК и довольно сложные схемы их "обвески". Мною предложена относительно несложная схема стробоскопа, которая легка в наладке и не имеет дефицитных деталей (см. рисунок).

R1C1R2VD1VD2 - звено, согласующее высоковольтный сигнал со входа устройства на вход микросхемы DA1, которая является таймером 1006ВИ1 , включенным по схеме одновибратора. На каждый входной импульс на выходе 3 появляется импульс, время существования которого определяется звеном R3C2. Резистором R3 регулируют длительность выходного импульса. На транзисторе VT1 собран усилитель.

На элементе DA1 собран одновибратор, т.е. ждущий мультивибратор, который ожидает входные импульсы с высоковольтного провода первого цилиндра. Датчик этих импульсов представляет собой обычную прищепку, на одной из сторон которой намотан провод диаметром 0,1 ...0,3 мм.

Количество витков 30-50, эта обмотка надежно закреплена клеем "Момент" или "Супер цемент", "Глобус" и т.д. Поверхность обмотки защищают обычной изолентой таким образом, чтобы прищепка надежно закрывалась или открывалась. К одному концу этой обмотки припаивают провод, лучше экранированный. Экран провода подключают к "земле" в основной схеме. Элементы R1 C1 R2 R3 согласовывают сигнал от датчика с входом микросхемы. Длительность выходного импульса регулируют звеном R3C2. Транзистор VT1 включает и выключает непосредственно светодиоды HL1-HL9. Свечение светодиодов должно быть ярко-белым. Светодиоды не имеют определенной марки.

Длительность выходного импульса должна быть в пределах 0,5...0,8 мс. Если больше, то светодиоды долго не выдерживают, и пометки на маховике или на шкиве коленвала будут "размыты". При регулировке обороты двигателя нужно держать в пределах 850... 1700 мин -1 . Обороты перед регулированием лучше пометить светоотражающей краской.

Детали желательно использовать как можно меньших типоразмеров, от этого зависят размеры платы. Конденсатор С1 слюдяной или К73-11, К73-17 с рабочим напряжением не меньше 500 В. Светодиоды нужно предварительно проверить на функционирование. Их установка на плате должна быть сконцентрирована в одном месте с целью максимального потока излучения. Размеры печатной платы зависят от конкретного устройства, в корпус которого исполнитель хочет "пристроить" стробоскоп. Я расположил стробоскоп в корпусе плоского электрического фонарика. Кроме проводо датчика, о котором было сказано выше, нужно ввести провода +12 В и "масса".

Собранный прибор нужно проверить, чтобы не вывести из строя светодиоды, которые являются самыми дорогими элементами на плате! Вместо них следует включить последовательно соединенные любой светодиод и резистор 1,5 кОм. Подключить провода, провод датчика пристроить на высоковольтный провод первого цилиндра.

Провода не должны касаться движущихся частей двигателя! Заведите двигатель и наблюдайте свечение светодиода. Осциллографом проконтролируйте длительность импульса на выводе 3 DA1, если она лежит в пределах 0,5...0,8 мс, то схема работает, и можно смело подключать светодиоды. Подключение осуществляйте только при заглушенном двигателе!

Отключите шланг "вакуума" от распределителя зажигания. Сделайте все необходимые подключения. Заведите двигатель, направьте луч стробоскопа на шкив коленвала или маховик. Наблюдайте пометки на соответствующих местах согласно техническому описанию конкретного автомобиля. Если пометки стоят на своих местах, то момент за-жигания установлен правильно. Если нет, то потребуется регулировка. Увеличьте обороты двигателя, наблюдайте перемещение пометок. Это констатирует, что центробежный регулятор момента зажигания работает. Осторожно подключите "вакуум", наблюдайте за перемещением положения пометок. Если есть изменение, то вакуумный регулятор распределителя работает.

Э.Л. Вьюга, г. Черкассы

Если вам нравится делать техобслуживание своего авто самому, то для уменьшения затрат на покупку инструмента вы можете сделать стробоскоп для зажигания своими руками.

Что такое стробоскоп

Стробоскопом называют прибор для наблюдения объектов, совершающих быстрые периодически повторяющиеся движения. Для этого он освещает движущийся объект яркими вспышками света, повторяющимися с частотой равной частоте движения этого объекта. При таком освещении движущийся объект кажется неподвижным. В двигателе авто с помощью стробоскопа можно определить величину угла опережения зажигания. Для этого нужно синхронизировать вспышки импульсами зажигания в первом цилиндре, а свет направлять на метки ВМТ и установки момента опережения зажигания, освещая и шкив коленвала с риской.

Стробоскопы заводского изготовления в качестве излучателя световых вспышек обычно имеют безынерционную импульсную лампу, позволяющую сделать настройки угла опережения зажигания даже в условиях яркого солнечного освещения. Однако она имеет небольшой срок службы и не всегда бывает в продаже. Поэтому с появлением светодиодов силой света более 2000 мкд при изготовлении стробоскопа своими руками стало удобнее пользоваться ими. Чтобы убедить в значительности превосходства параметров светового потока новых светодиодов, напомним, что у АЛ307 при том же потребляемом токе сила света составляет всего 10–16 мкд.

(схема к видеоматерилам в описании под видео)

Материалы

Предлагаемая для изготовления своими руками схема стробоскопа проста и не требует сложной настройки. Чтобы сделать простой стробоскоп для корректировки момента опережения зажигания своими руками, понадобятся следующие инструменты, детали и материалы:

  1. Карманный фонарик с достаточно большим отсеком для батареек.
  2. Светодиоды КИПД21П-К – 9 шт.
  3. Микросхема К561ТМ2 (два двухступенчатых D-триггера). Российские аналоги: К176ТМ2, 564ТМ2; импортный аналог – CD4013/HEF4013.
  4. Транзистор КТ315Б – 2 шт. (VT1, VT2); КТ815А – 1шт. (VT3).
  5. Подстроечный резистор СПЗ-196 или СП5-1 сопротивлением 33 кОм.
  6. Постоянные резисторы 5,1 Ом – 3 шт., 3 кОм – 1 шт., 15 кОм – 1 шт., 20 кОм – 2 шт., 330 кОм – 1 шт., мощностью не менее 0,125 Вт.
  7. Диод КД213 или любой другой средней мощности с U обр. макс не менее 16 В.
  8. Неполярные конденсаторы КМ-5, К73-9 или другие. С1 должен быть рабочим напряжением не менее 200 В остальные не меньше 16 В. 0,068 мкФ – 3 шт., 47 пФ – 1 шт.
  9. Любой тумблер для включения питания устройства.
  10. 1 м экранированного провода (например, антенного).
  11. 3 зажима «крокодил».
  12. Небольшой кусочек фольгированного текстолита толщиной 1 мм.
  13. Многожильный двойной изолированный медный провод – 1,5 м.
  14. Клеевой пистолет.
  15. Паяльник, припой, флюс.

Конструкция устройства

Корпусом стробоскопа будет фонарик. Схема собирается навесным монтажом. Готовая схема заливается горячим пластиком из клеевого пистолета, и после отвердения заливки помещается в отсек для батареек фонарика. Питающий и сигнальный кабели выводятся наружу через просверленные в корпусе отверстия. К концам проводов питания нужно припаять зажимы, обозначив полярность. На вход стробоскопа подключить антенный кабель. К центральной жиле входного кабеля припаять зажим «крокодил». После подключения стробоскопа к мотору авто с его помощью на вход будут подаваться импульсы синхронизации высоковольтного провода зажигания. Чтобы это стало возможным, достаточно надеть его на изоляцию высоковольтного провода зажигания первого цилиндра двигателя авто. Импульс синхронизации пойдет через емкость, образуемую центральной жилой провода зажигания и зажимом. То есть простой самодельный емкостной датчик будет состоять из зажима «крокодил», надетого на высоковольтный провод.

Сделать световой излучатель удобнее всего, смонтировав группу светодиодов, вплотную друг к другу в центре диска из фольгированного текстолита. Устанавливать его следует так, чтобы светодиоды, пройдя в отверстие для лампочки в отражателе, оказались как можно ближе к точке расположения нити накаливания. Прикрепить текстолит к рефлектору можно при помощи клеевого пистолета.

Питание

Питание прибора происходит от бортовой электрической сети авто. Диод VD1 предохраняет устройство от случайного подключения питания обратной полярности. Импульс синхронизации с емкостного датчика через цепь C1, R2 подается на вход триггера DD1.1, включенного как ждущий мультивибратор. Импульс высокого уровня запускает ждущий мультивибратор, триггер при этом переключается, а конденсатор С3, заряженный в исходном состоянии, начинает перезаряжаться через резистор R3. Приблизительно через 15 мс этот конденсатор перезарядится настолько, что напряжение на входе R вновь сбросит триггер в исходное состояние.

Так ждущий мультивибратор реагирует на каждый положительный импульс с емкостного датчика, вырабатывая синхронно входному прямоугольный выходной импульс высокого уровня постоянной длительности (15 мс), которая определяется номиналами резистора R3 и конденсатора C3. Последовательность этих импульсов с неинвертирующего выхода триггера DD1.1 поступает на вход второго ждущего мультивибратора, собранного по аналогичной схеме на триггере DD1.2. Длительность импульсов второго узла достигает 1,5 мс и определяется параметрами резистора R4 и конденсатора C4. Выходное напряжение второго триггера открывает триоды VT1 – VT3, и через светодиоды проходят импульсы тока величиной от 0,7 до 0,8 А.

Некоторые тонкости

Несмотря на то что величина тока значительно больше допустимой для этих светодиодов (максимально допустимый прямой импульсный ток всего 100 мА), не следует опасаться перегрева и выхода их из строя. Потому что длительность импульсов невелика, а их скважность в нормальном режиме не меньше 15. Яркость же вспышек девяти светодиодов позволяет пользоваться прибором даже днем.

Редакция журнала «Радио» сообщает о том, что для того чтобы убедится в работоспособности устройства, было проведено его испытание.

Светодиоды с успехом перенесли импульсный ток величиной 1 А в течение часа, при этом не было обнаружено даже небольшого их перегрева. Обычно же время работы с прибором не превышает 5 мин, да и ток, проходящий через них в этой конструкции, несколько меньше.

Назначение ждущего мультивибратора на триггере DD1.1 – защита светодиодов от выхода из строя при увеличении частоты вращения коленвала. Обычно прибором работают при частоте вращения коленвала близкой к холостому ходу (от 800 до 1200 об/мин). Так как длительность вспышек величина постоянная, при увеличении частоты вращения коленвала будет уменьшаться скважность импульсов тока через светодиоды, и, как следствие этого, увеличится нагревание последних. Поэтому длительность импульсов ждущего мультивибратора на триггере DD1.1 выбрана такой, что при достижении частоты вращения коленвала 2 тыс. об -1 скважность его выходной последовательности импульсов приближалась к 1. При дальнейшем же возрастании частоты вращения, а с ней и входных импульсов, происходит прекращение синхронизации ими выходных импульсов, а узел начинает вырабатывать последовательность импульсов усредненной частоты, что гораздо менее опасно для светодиодов.

Настройка устройства

Опытным путем установлено, что длительность вспышек должна быть от 0,5 до 0,8 мс. При меньшей длительности вспышек во время установки угла опережения с помощью стробоскопа велико ощущение недостатка света. Если же длительность больше, то движущаяся метка как бы размазывается. Необходимую длительность легко подобрать своими руками не измеряя, а руководствуясь только зрительными ощущениями. Регулируется она с помощью подстроечного резистора R4. Больше схема ни в каких настройках не нуждается.

Использование прибора

Для установки угла (момента) опережения своими руками устройством освещают установочные метки, работающего на холостых оборотах двигателя авто. Одна из них находится на вращающихся деталях мотора авто (на шкиве коленвала или на маховике). Вторая метка – неподвижна, она находится или на крышке передней части блока цилиндров авто, или на корпусе коробки передач. Если в свете прибора подвижная метка кажется стоящей напротив неподвижной, зажигание авто в норме и не требует регулировки момента (угла) опережения.

В случае несовпадения меток для регулировки момента опережения нужно соответственно изменить положение трамблера. Для задержки момента зажигания нужно повернуть трамблер по ходу вращения бегунка, а чтобы сделать его раньше – в обратную сторону. Если же искрообразованием в вашем авто управляет микропроцессор, ищите неисправный датчик или доверьте решение этой проблемы профессионалам.

Многие знают, как важна для слаженной работы двигателя правильная установка угла опережения зажигания и регуляторов угла опережения зажигания. Ошибочная установка начального угла опережения зажигания всего на 2-3 градуса, а также различные неисправности регуляторов опережения приведут к потере мощности двигателя, его перегреву, повышенному расходу топлива и самое печальное к сокращению срока эксплуатации двигателя автомобиля.


Но проверка и регулировка угла опережения является весьма большой проблемой, которая не всегда доступна даже опытному механику. Стробоскоп своими руками поможет решить эту проблему. С их помощью любой автолюбитель может в течение 15 минут проверить и выставить угол опережения зажигания, а также проверить работоспособность центробежного и вакуумного регуляторов опережения.

Основа схемы стробоскопа таймерные устройства, собранные на микросхемах КР1006ВИ1 которые обладают более стабильными временными характеристиками, так как длительности импульса и паузы между импульсами не зависят от напряжения источника питания.

К высоковольтному проводу первого цилиндра бензинового двигателя прибор подключается посредством зажима типа “крокодил” . В верхнем положении движка переключателя SA1 прибор работает в режиме тахометра, в нижнем положении - в режиме автомобильного стробоскопа.


Стробоскоп своими руками схема на КР1006ВИ1

В верхнем положении движка переключателя SA1 таймер DD1 включен по схеме генератора импульсов с длительностью примерно 0,5 мс и определяется, в основном, номиналами резистора R4 и конденсатора С2. Такая длительность импульса является оптимальной, и выбиралась по следующим далее критериям. При малой длительности им пульсов яркости четырёх светодиодов при дневном освещении может оказаться недостаточно для освещения метки на низкой частоте вращения шкива двигателя. При большей длительности импульсов изображение метки будет нечётким, “размытым” на высокой частоте вращения вала двигателя.

Период повторения импульсов зависит от номиналов резисторов R5, R6 и конденсатора С2, и регулируется переменным резистором R6.

В нижнем положении движка переключателя SA1 прибор работает в режиме автомобильного стробоскопа. Таймер DD1 в этом режиме включен по схеме одновибратора импульсов с той же самой длительностью 0,5 мс. Запускается одновибратор отрицательным перепадом напряжения на входе прибора, который через цепь С1, R3, SA1.2 подаётся на вход таймера DD1. Транзистор VT1 усиливает ток до необходимой величины.

Импульсный ток в 250 мА через светодиод, является великоватым, поэтому номиналы резисторов R11, R12 выбраны таким образом, чтобы импульсный ток через каждый из светодиодов HL1...HL4 на малой частоте вспышек не превышал 100 мА. На высокой частоте вспышек период уменьшается, и конденсатор С6 не успевает зарядиться через резистор R10 до напряжения, близкого к напряжению источника питания. Поэтому напряжение на нем уменьшается. Это приводит к снижению импульсного тока через светодиоды, что существенно повышает надёжность устройства.

Диод VD1 развязывает цепи заряда и разряда конденсатора С2. Резистор R3 и диод VD2 защищают вход таймера DD1 от высокого положительного напряжения. От отрицательного напряжения таймер DD1 защищен резистором R3 и внутренним диодом. Конденсаторы СЗ, С4 помехоподавляющие. От ошибочной смены полярности источника питания защищает диод VD3.

В качестве диодов VD1, VD2 можно применить любые диоды из серии КД521. Диод VD3 можно заменить любым диодом из серий , Кд212. Таймер КР1006ВИ1 можно заменить импортным аналогом NE555. Резистор R6 применён типа СПЗ-З0а с характеристикой Б и углом поворота движка 270°. Можно применить резистор типа СП-I, но у него меньший угол поворота движка - 255°.

Если в распоряжении радиолюбителя не окажется переменного резистора с характеристикой Б, то можно применить переменный резистор с характеристикой В, но шкала в этом случае получится обратной. В случае отсутствия переменного резистора номиналом 220 кОм, можно применить переменный резистор номиналом 150 кОм или 470 кОм. В первом случае номиналы резисторов R4, R5 следует уменьшить, а номинал конденсатора С2 увеличить в 1,47 раза. Во втором случае номиналы резисторов R4, R5 следует увеличить, а номинал конденсатора С2 уменьшить в 2,14 раза. От типа конденсатора С2 зависят температурные и временные характеристики прибора, поэтому конденсатор С2 лучше применить типа К73-17 на напряжение 63 В. Переключатель SA1 - любой малогабаритный на два положения и два направления, например, типа П2Т-1 -1 В. Конденсаторы С5, С6 - типа К50-35, но лучше импортные, у них меньшие габариты и ток утечки. Конденсатор С1 типа КТ-2, или другого типа, но он должен выдерживать напряжение не ниже 500 В. Конденсаторы СЗ, С4 - типа КМЗ...КМ6. Переменный резистор R1 - малогабаритный типа СП4-1. Транзистор VT1 должен быть с коэффициентом усиления тока менее 50 и с максимальным током коллектора не менее 0,4 А.

В качестве VT1 можно применить полевой транзистор КП505А (Б, В). Резисторы R8, R9 в этом случае нужно исключить, а затвор транзистора соединить с выводом 3 микросхемы DD1. Провод от зажима до прибора должен быть экранированным. Его длину не следует выбирать более 35...40 см. экранирующая оплётка соединена с общим проводом на выходе прибора.

При разработке радиолюбителем рисунка печатной платы стробоскопа своими руками(например в ) следует учесть, что входные цепи таймера DD1 должны быть как можно короче, так как автомобильный бензиновый двигатель является мощным источником помех.

Налаживание стробоскопа своими руками

Устанавливают переключатель SA1 в верхнее по схеме положение и градуируют шкалу переменного резистора R6 с помощью частотомера или, что хуже, осциллографа. В самом крайнем случае, если нет частотомера и осциллографа, отградуировать прибор можно с помощью цифрового мультиметра с измерителем ёмкости конденсаторов. Длительность импульса t, = 0,7 R4C2. Длительность паузы t2 = 0,7 (R5 + R6) С2. Для удобства пользования прибором градуировать следует в мин-1. На этом налаживание прибора завершено. Выравнивать токи через светодиоды HL1, HL2 и HL3, HL4 не нужно.

Пользоваться прибором не сложно. Для проверки работы вакуумного и центробежного регуляторов угла опережения зажигания бензинового двигателя установить движок переключателя SA1 в нижнее положение. Закрепить датчик на высоковольтный провод первого цилиндра двигателя, подать питание на прибор. Запустить двигатель и направить луч мигающего света на установочные метки. Если метки плохо видны из-за грязи или окислов металла, следует очистить их и выделить белой краской или мелом. Сопротивление резистора R1 установить таким, чтобы прибор устойчиво срабатывал на искру только при подключенном датчике к проводу высокого напряжения первого цилиндра бензинового двигателя.

Для измерения частоты вращения ротора (коленчатого вала) двигателя переключатель SA1 перевести в верхнее положение, подать питание на прибор и направить луч мигающего света на шкив работающего двигателя с предварительно нанесенной меткой. Вращая движок переменного резистора R6 добиться того, чтобы шкив с меткой казался неподвижным. Метка при этом должна быть видна только в одном месте шкива двигателя. Если на шкиве окажется две метки, то это означает, что частота вспышек вдвое большее частоты вращения вала двигателя.

Прибор проверен в работе в течение 48 часов в режиме тахометра на минимальной и максимальной частоте вспышек светодиодов HL1 ...HL4 от источника напряжения 16 В и показал высокую надёжность в работе.

В качестве реле можно использовать отечественный аналог РЭС-10 на 12 вольт.

Работает схема по следующему алгоритму, в момент подачи напряжения питания от аккумуляторной батареи конденсатор C1 начинает заряжаться через резистор R3 . Достигнув нужного значения это напряжение, поступает на базу транзистора, который открывается. После этого срабатывает реле а, его контакт замыкается и подготавливает тиристор к открытию. Как только на управляющий электрод тиристора через делитель напряжения на резисторах R1, R2 приходит управляющий импульс тиристор открывается, а конденсатор начинает разряжаться через светодиоды. Происходит короткая яркая вспышка.

Затем транзистор закрывается, размыкает свой контакт и реле, но с небольшой задержкой, увеличивая тем самым на доли секунды время горения светодиодов. Схема переходит в исходное состояния, ожидая следующий управляющий импульс.

Благодаря такому простому схемотехническому решению мерцание светодиодов стробоскопа становится более ярким и метка на маховике хорошо заметна.


Стробоскоп своими руками простая схема на реле

Подбором емкости конденсатора можно варьировать длительность горения светодиодов. Чем выше значение ёмкости конденсатора, тем сильнее вспышка, но и длиннее шлейф метки. При меньшем значении ёмкости резкость метки возрастает, но уменьшается яркость.

Элементы схемы стробоскопа без особых затруднений можно разместить в корпусе светодиодного фонаря. С тыльной стороны фонарика делают небольшое отверстие и пропускают питающие провода длиной не менее полуметра, на концы которых для удобства использования припаивают крокодилы. С боку в корпусе также проделывают отверстие для экранированного провода контакта Х1. На конце экранную оплётку плотно обматывают изолентой, а к центральной жиле припаивают медный провод длиной 10 см, который является датчиком стробоскопа. Этот провод при подключении необходимо намотать в 3-4 витка на высоковольтный провод первого цилиндра поверх изоляции. Намотку обязательно делайте как можно ближе к свече, чтобы избежать наводок соседних проводов.

Основой схемы стробоскопа является интегральная микросхема одновибратор 155АГ1, которая запускается импульсами отрицательной полярности. Поэтому для их формирования управляющий сигнал с прерывателя автомобиля подается на базу биполярного транзистора VT1, который их и формирует. Сопротивления R1, R2, R3 и стабилитрон VD2 предназначены для ограничения амплитуды входного сигнала поступающего с прерывателя зажигания.


Стробоскоп своими руками на светодиодах

Емкостью С4 и резистором R6 регулируют требуемую длительность импульсов, которые генерируются одновибратором. При заданных как на схеме значениях продолжительность этих импульсов будет 1,5-2 мс.