Операционным усилителем (ОУ) принято называть интегральный усилитель постоянного тока с дифференциальным входом и двухтактным выходом, предназначенный для работы с цепями обратных связей. Название усилителя обусловлено первоначальной областью его применения - выполнением различных операций над аналоговыми сигналами (сложение, вычитание, интегрирование и др.). В настоящее время ОУ выполняют роль многофункциональных узлов при реализации разнообразных устройств электроники различного назначения. Они применяются для усиления, ограничения, перемножения, частотной фильтрации, генерации, стабилизации и т.д. сигналов в устройствах непрерывного и импульсного действия.

Необходимо отметить, что современные монолитные ОУ по своим размерам и цене незначительно отличаются от отдельных дискретных элементов, например, транзисторов. Поэтому выполнение различных устройств на ОУ часто осуществляется значительно проще, чем на дискретных элементах или на усилительных ИМС.

Идеальный ОУ имеет бесконечно большой коэффициент усиления по напряжению (K и ОУ =∞), бесконечно большое входное сопротивление, бесконечно малое выходное сопротивление, бесконечно большой КОСС и бесконечно широкую полосу рабочих частот. Естественно, что на практике ни одно из этих свойств не может быть осуществлено полностью, однако к ним можно приблизиться в достаточной для многих областей мере.

На рисунке 6.1 приведено два варианта условных обозначений ОУ - упрощенный (а) и с дополнительными выводами для подключения цепей питания и цепей частотной коррекции (б).

Рисунок 6.1. Условные обозначения ОУ


На основе требований к характеристикам идеального ОУ можно синтезировать его внутреннюю структуру, представленную на рисунке 6.2.


Рисунок 6.2. Структурная схема ОУ


Упрощенная электрическая схема простого ОУ, реализующая структурную схему рисунка 6.2, показана на рисунке 6.3.


Рисунок 6.3. Схема простого ОУ


Данная схема содержит входной ДУ (VT 1 и VT 2) с токовым зеркалом (VT 3 и VT 4), промежуточные каскады с ОК (VT 5) и с ОЭ (VT 6), и выходной токовый бустер на транзисторах VT 7 и VT 8 . ОУ может содержать цепи частотной коррекции (C кор), цепи питания и термостабилизации (VD 1 , VD 2 и др.), ИСТ и т.д. Двухполярное питание позволяет осуществить гальваническую связь между каскадами ОУ и нулевые потенциалы на его входах и выходе в отсутствии сигнала. С целью получения высокого входного сопротивления входной ДУ может быть выполнен на ПТ. Следует отметить большое разнообразие схемных решений ОУ, однако основные принципы их построения достаточно полно иллюстрирует рисунок 6.3.

6.2. Основные параметры и характеристики ОУ

Основным параметром ОУ коэффициент усиления по напряжению без обратной связи K u ОУ , называемый также полным коэффициентом усиления по напряжению. В области НЧ и СЧ он иногда обозначается K u ОУ 0 и может достигать нескольких десятков и сотен тысяч.

Важными параметрами ОУ являются его точностные параметры, определяемые входным дифференциальным каскадом. Поскольку точностные параметры ДУ были рассмотрены в подразделе 5.5, то здесь ограничимся их перечислением:

◆ напряжение смещения нуля U см ;

◆ температурная чувствительность напряжения смещения нуля dU см /dT ;

◆ ток смещения ΔI вх ;

◆ средний входной ток I вх ср .

Входные и выходные цепи ОУ представляются входным R вхОУ и выходным R выхОУ сопротивлениями, приводимыми для ОУ без цепей ООС. Для выходной цепи даются также такие параметры, как максимальный выходной ток I выхОУ и минимальное сопротивление нагрузки R н min , а иногда и максимальная емкость нагрузки. Входная цепь ОУ может включать емкость между входами и общей шиной. Упрощенные эквивалентные схемы входной и выходной цепи ОУ представлены на рисунке 6.4.


Рисунок 6.4. Простая линейная макромодель ОУ


Среди параметров ОУ следует отметить КОСС и коэффициент ослабления влияния нестабильности источника питания КОВНП=20lg·(ΔE U вх ). Оба этих параметра в современных ОУ имеют свои значения в пределах (60…120)дБ.

К энергетическим параметрам ОУ относятся напряжение источников питания ±E, ток потребления (покоя) I П и потребляемая мощность. Как правило, I П составляет десятые доли - десятки миллиампер, а потребляемая мощность, однозначно определяемая I П , единицы - десятки милливатт.

К максимально допустимым параметрам ОУ относятся:

◆ максимально возможное (неискаженное) выходное напряжение сигнала U вых max (обычно чуть меньше Е);

◆ максимально допустимая мощность рассеивания;

◆ рабочий диапазон температур;

◆ максимальное напряжение питания;

◆ максимальное входное дифференциальное напряжение и др.

К частотным параметрам относится абсолютная граничная частота или частота единичного усиления f T (F 1), т.е. частота, на которой K u ОУ =1. Иногда используется понятие скорости нарастания и времени установления выходного напряжения, определяемые по реакции ОУ на воздействие скачка напряжения на его входе. Для некоторых ОУ приводятся также дополнительные параметры, отражающие специфическую область их применения.

Амплитудные (передаточные) характеристики ОУ представлены на рисунке 6.5 в виде двух зависимостей U вых =f (U вх ) для инвертирующего и неинвертирующего входов.

Когда на обоих входах ОУ U вх =0, то на выходе будет присутствовать напряжение ошибки U ош , определяемое точностными параметрами ОУ (на рисунке 6.5 U ош не показано ввиду его малости).


Рисунок 6.5. АХ ОУ


Частотные свойства ОУ представляются его АЧХ, выполненной в логарифмическом масштабе, K u ОУ =φ(lg f ). Такая АЧХ называется логарифмической (ЛАЧХ), ее типовой вид приведен на рисунке 6.6 (для ОУ К140УД10).

Рисунок 6.6. ЛАЧХ и ЛФЧХ ОУ К140УД10


Частотную зависимость K u ОУ можно представить в виде:

Здесь τ в постоянная времени ОУ, которая при M в =3 дБ определяет частоту сопряжения (среза) ОУ (см. рисунок 6.6);

ω в = 1/τ в = 2πf в .

Заменив в выражении для K u ОУ τ в на 1/ω в , получим запись ЛАЧХ:

На НЧ и СЧ K u ОУ =20lgK u ОУ 0 , т.е. ЛАЧХ представляет собой прямую, параллельную оси частот. С некоторым приближением можем считать, что в области ВЧ спад K u ОУ происходит со скоростью 20дБ на декаду(6дБ на октаву). Тогда при ω>>ω в можно упростить выражение для ЛАЧХ:

K u ОУ = 20lgK u ОУ 0 – 20lg(ω/ω в ).

Таким образом, ЛАЧХ в области ВЧ представляется прямой линией с наклоном к оси частот 20дБ/дек. Точка пересечения рассмотренных прямых, представляющих ЛАЧХ, соответствует частоте сопряжения ω в (f в ). Разница между реальной ЛАЧХ и идеальной на частоте f в составляет порядка 3дБ (см. рисунок 6.6), однако для удобства анализа с этим мирятся, и такие графики принято называть диаграммами Боде .

Следует заметить, что скорость спада ЛАЧХ 20дБ/дек характерна для скорректированных ОУ с внешней или внутренней коррекцией, основные принципы которой будут рассмотрены ниже.

На рисунке 6.6 представлена также логарифмическая ФЧХ (ЛФЧХ), представляющая собой зависимость фазового сдвига j выходного сигнала относительно входного от частоты. Реальная ЛФЧХ отличается от представленной не более чем на 6°. Отметим, что и для реального ОУ j=45° на частоте f в , а на частоте f T - 90°. Таким образом, собственный фазовый сдвиг рабочего сигнала в скорректированном ОУ в области ВЧ может достигнуть 90°.

Рассмотренные выше параметры и характеристики ОУ описывают его при отсутствии цепей ООС. Однако, как отмечалось, ОУ практически всегда используется с цепями ООС, которые существенно влияют на все его показатели.

6.3. Инвертирующий усилитель

Наиболее часто ОУ используется в инвертирующих и неинвертирующих усилителях. Упрощенная принципиальная схема инвертирующего усилителя на ОУ приведена на рисунке 6.7.


Рисунок 6.7. Инвертирующий усилитель на ОУ


Резистор R 1 представляет собой внутреннее сопротивление источника сигнала E г , посредством R ос ОУ охвачен ∥ООСН.

При идеальном ОУ разность напряжений на входных зажимах стремиться к нулю, а поскольку неинвертирующий вход соединен с общей шиной через резистор R 2 , то потенциал в точке a тоже должен быть нулевым ("виртуальный нуль", "кажущаяся земля"). В результате можем записать: I г =I ос , т.е. E г /R 1 =–U вых /R ос . Отсюда получаем:

K U инв = U вых /E г = –R ос /R 1 ,

т.е. при идеальном ОУ K U инв определяется отношением величин внешних резисторов и не зависит от самого ОУ.

Для реального ОУ необходимо учитывать его входной ток I вх , т.е. I г =I ос +I вх или (E г U вх )/R 1 =(U вх U вых )/R ос +U вх /U вхОУ , где U вх - напряжение сигнала на инвертирующем входе ОУ, т.е. в точке a . Тогда для реального ОУ получаем:

Нетрудно показать, что при глубине ООС более 10, т.е. K u ОУ /K U инв =F >10, погрешность расчета K U инв для случая идеального ОУ не превышает 10%, что вполне достаточно для большинства практических случаев.

Номиналы резисторов в устройствах на ОУ не должны превышать единиц мегом, в противном случае возможна нестабильная работа усилителя из-за токов утечки, входных токов ОУ и т.п. Если в результате расчета величина R ос превысит предельное рекомендуемое значение, то целесообразно использовать Т-образную цепочку ООС, которая при умеренных номиналах резисторов позволяет выполнить функцию эквивалента высокоомного R ос (рисунок 6.7б) . В этом случае можно записать:

На практике часто полагают, что R ос 1 =R ос 2 >>R ос 3 , а величина R 1 обычно задана, поэтому R ос 3 определяется достаточно просто.

Входное сопротивление инвертирующего усилителя на ОУ R вх инв имеет относительно небольшое значение, определяемое параллельной ООС:

R вх инв = R 1 +(R ос /K u ОУ + 1)∥R вхОУ R 1 ,

т.е. при больших K u ОУ входное сопротивление определяется величиной R 1 .

Выходное сопротивление инвертирующего усилителя R вых инв в реальном ОУ отлично от нуля и определяется как величиной R вых ОУ , так и глубиной ООС F. При F>10 можно записать:

R вых инв = R вых ОУ /F = R вых ОУ /K U инв /K u ОУ .

С помощью ЛАЧХ ОУ можно представить частотный диапазон инвертирующего усилителя (см. рисунок 6.6), причем

f вОС = f T /K U инв .

В пределе можно получить K U инв =1, т.е. получить инвертирующий повторитель. В этом случае получаем минимальное выходное сопротивление усилителя на ОУ:

R вых пов = R вых ОУ /K u ОУ .

В усилителе на реальном ОУ на выходе усилителя при U вх =0 всегда будет присутствовать напряжение ошибки U ош , порождаемое U см и ΔI вх . С целью снижения U ош стремятся выровнять эквиваленты резисторов, подключенных к входам ОУ, т.е. взять R 2 =R 1 ∥R ос (см. рисунок 6.7а). При выполнении этого условия для K U инв >10 можно записать:

U ош U см K U инв + ΔI вх R ос .

Уменьшение U ош возможно путем подачи дополнительного смещения на неинвертирующий вход (с помощью дополнительного делителя) и уменьшения номиналов применяемых резисторов.

На основе рассмотренного инвертирующего УПТ возможно создание усилителя переменного тока путем включения на вход и выход разделительных конденсаторов, номиналы которых определяются исходя из заданного коэффициента частотных искажений M н (см. подраздел 2.5).

6.4. Неинвертирующий усилитель

Упрощенная принципиальная схема неинвертирующего усилителя на ОУ приведена на рисунке 6.8.

Рисунок 6.8. Неинвертирующий усилитель на ОУ


Нетрудно показать, что в неинвертирующем усилителе ОУ охвачен ПООСН. Поскольку U вх и U ос подаются на разные входы, то для идеального ОУ можно записать:

U вх = U вых R 1 /(R 1 + R ос ),

откуда коэффициент усиления по напряжению неинвертирующего усилителя:

K U неинв = 1 + R ос /R 1 ,

K U неинв = 1 + |K U инв |.

Для неинвертирующего усилителя на реальном ОУ полученные выражения справедливы при глубине ООС F>10.

Входное сопротивление неинвертирующего усилителя R вх неинв велико и определяется глубокой последовательной ООС и высоким значением R вхОУ :

R вх неинв = R вхОУ ·F = R вхОУ ·K U ОУ /K U неинв .

Выходное сопротивление неинвертирующего усилителя на ОУ определяется как для инвертирующего, т.к. в обоих случаях действует ООС по напряжению:

R вых неинв = R выхОУ /F = R выхОУ /K U неинв /K U ОУ .

Расширение полосы рабочих частот в неинвертирующем усилителе достигается также, как и в инвертирующем, т.е.


f вОС = f T /K U неинв .

Для снижения токовой ошибки в неинвертирующем усилителе, аналогично инвертирующему, следует выполнить условие:

R г = R 1 ∥R ос .

Неинвертирующий усилитель часто используют при больших R г (что возможно за счет большого R вх неинв ), поэтому выполнение этого условия не всегда возможно из-за ограничения на величину номиналов резисторов.

Наличие на инвертирующем входе синфазного сигнала (передаваемого по цепи: неинвертирующий вход ОУ ⇒ выход ОУ ⇒ R ос ⇒ инвертирующий вход ОУ) приводит к увеличению U ош , что является недостатком рассматриваемого усилителя.

При увеличении глубины ООС возможно достижение K U неинв =1, т.е. получение неинвертирующего повторителя, схема которого приведена на рисунке 6.9.

Рисунок 6.9. Неинвертирующий повторитель на ОУ


Здесь достигнута 100% ПООСН, поэтому данный повторитель имеет максимально большое входное и минимальное выходное сопротивления и используется, как и любой повторитель, в качестве согласующего каскада. Для неинвертирующего повторителя можно записать:

U ош U см + I вх ср R г I вх ср R г ,

т.е. напряжение ошибки может достигать довольно большой величины.

На основе рассмотренного неинвертирующего УПТ также возможно создание усилителя переменного тока путем включения на вход и выход разделительных конденсаторов, номиналы которых определяются исходя из заданного коэффициента частотных искажений M н (см. подраздел 2.5).

Помимо инвертирующего и неинвертирующего усилителей на основе ОУ выполняются различные варианты УУ, некоторые из них будут рассмотрены ниже.

6.5. Разновидности УУ на ОУ

разностный (дифференциальный) усилитель , схема которого приведена на рисунке 6.10.

Рисунок 6.10. Разностный усилитель на ОУ


Разностный усилитель на ОУ можно рассматривать как совокупность инвертирующего и неинвертирующего вариантов усилителя. Для U вых разностного усилителя можно записать:

U вых = K U инв U вх 1 + K U неинв U вх 2 R 3 /(R 2 + R 3).

Как правило, R 1 =R 2 и R 3 =R ос , следовательно, R 3 /R 2 =R ос /R 1 =m . Раскрыв значения коэффициентов усиления, получим:

U вых = m (U вх 2 – U вх 1),

Для частного случая при R 2 =R 3 получим:

U вых = U вх 2 – U вх 1 .

Последнее выражение четко разъясняет происхождение названия и назначение рассматриваемого усилителя.

В разностном усилителе на ОУ при одинаковой полярности входных напряжений имеет место синфазный сигнал, который увеличивает ошибку усилителя. Поэтому в разностном усилителе желательно использовать ОУ с большим КОСС. К недостаткам рассмотренного разностного усилителя можно отнести разную величину входных сопротивлений и трудность в регулировании коэффициента усиления. Эти трудности устраняются в устройствах на нескольких ОУ, например, в разностном усилителе на двух повторителях (рисунок 6.11).

Рисунок 6.11. Разностный усилитель на повторителях


Данная схема симметрична и характеризуется одинаковыми входными сопротивлениями и малым напряжением ошибки, но работает только на симметричную нагрузку.

На основе ОУ может быть выполнен логарифмический усилитель , принципиальная схема которого приведена на рисунке 6.12.

Рисунок 6.12 Логарифмический усилитель на ОУ


P-n переход диода VD смещен в прямом направлении. Полагая ОУ идеальным, можно приравнять токи I 1 и I 2 . Используя выражение для ВАХ p-n перехода {I =I 0 ·}, нетрудно записать:

U вх /R = I 0 ·,

откуда после преобразований получим:

U вых = φ T ·ln(U вх /I 0 R ) = φ T (lnU вх – lnI 0 R ),

из чего следует, что выходное напряжение пропорционально логарифму входного, а член lnI 0 R представляет собой ошибку логарифмирования. Следует заметить, что в данном выражении используются напряжения, нормированные относительно одного вольта.

При замене местами диода VD и резистора R получается антилогарифмический усилитель .

Широкое распространение получили инвертирующие и неинвертирующие сумматоры на ОУ, называемые еще суммирующими усилителями или аналоговыми сумматорами. На рисунке 6.13 приведена принципиальная схема инвертирующего сумматора с тремя входами. Это устройство является разновидностью инвертирующего усилителя, многие свойства которого проявляются и в инвертирующем сумматоре.

Рисунок 6.13. Инвертирующий сумматор на ОУ


U вх 1 /R 1 + U вх 2 /R 2 + U вх 3 /R 3 = –U вых /R ос ,

Из полученного выражения следует, что выходное напряжение устройства представляет собой сумму входных напряжений, умноженную на коэффициент усиления K U инв . При R ос =R 1 =R 2 =R 3 K U инв =1 и U вых =U вх 1 +U вх 2 +U вх 3 .

При выполнении условия R 4 =R ос R 1 ∥R 2 ∥R 3 токовая ошибка мала, и ее можно рассчитать по формуле U ош =U см (K U ош +1), где K U ош =R ос /(R 1 ∥R 2 ∥R 3) - коэффициент усиления сигнала ошибки, который имеет большее значение, чем K U инв .

Неинвертирующий сумматор реализуется также как и инвертирующий сумматор, но для него следует использовать неинвертирующий вход ОУ по аналогии с неинвертирующим усилителем.

При замене резистора R ос конденсатором C (рисунок 6.14) получаем устройство, называемое аналоговым интегратором или просто интегратором.

Рисунок 6.14. Аналоговый интегратор на ОУ


При идеальном ОУ можно приравнять токи I 1 и I 2 , откуда следует:

Точность интегрирования тем выше, тем больше K u ОУ .

Кроме рассмотренных УУ, ОУ находят применение в целом ряде устройств непрерывного действия, которые будут рассмотрены ниже.

6.6. Коррекция частотных характеристик

Под коррекцией частотных характеристик будем понимать изменение ЛАЧХ и ЛФЧХ для получения от устройств на ОУ необходимых свойств и, прежде всего, обеспечение устойчивой работы. ОУ обычно используется с цепями ООС, однако при некоторых условиях, из-за дополнительных фазовых сдвигов частотных составляющих сигнала, ООС может превратится в ПОС и усилитель потеряет устойчивость. Поскольку ООС очень глубокая (βK U >>1), то особенно важно обеспечить фазовый сдвиг между входным и выходным сигналом, гарантирующий отсутствие возбуждения.

Ранее на рисунке 6.6 были приведены ЛАЧХ и ЛФЧХ для скорректированного ОУ, по форме эквивалентные ЛАЧХ и ЛФЧХ одиночного усилительного каскада, из которых видно, что максимальный фазовый сдвиг φ<90° при K u ОУ >1, а скорость спада коэффициента усиления в области ВЧ составляет 20дБ/дек. Такой усилитель устойчив при любой глубине ООС.

Если ОУ состоит из нескольких каскадов (например, трех), каждый из которых имеет скорость спада 20дБ/дек и не содержит цепей коррекции, то его ЛАЧХ и ЛФЧХ имеют более сложную форму (рисунок 6.15) и содержит область неустойчивых колебаний.


Рисунок 6.15. ЛАЧХ и ЛФЧХ нескорректированного ОУ


Для обеспечения устойчивой работы устройств на ОУ используются внутренние и внешние цепи коррекции, с помощью которых добиваются общего фазового сдвига при разомкнутой цепи ООС менее 135° на максимальной рабочей частоте. При этом автоматически получается, что спад K u ОУ составляет порядка 20дБ/дек.

В качестве критерия устойчивости устройств на ОУ удобно использовать критерий Боде , формулируемый следующим образом: "Усилитель с цепью обратной связи устойчив, если прямая его коэффициента усиления в децибелах пересекает ЛАЧХ на участке со спадом 20дБ/дек". Таким образом, можно заключить, что цепи частотной коррекции в ОУ должны обеспечивать скорость спада K U инв (K U неинв ) на ВЧ порядка 20дБ/дек.

Цепи частотной коррекции могут быть как встроенные в полупроводниковый кристалл, так и созданными внешними элементами. Простейшая цепь частотной коррекции осуществляется с помощью подключения к выходу ОУ конденсатора C кор достаточно большого номинала. Необходимо, чтобы постоянная времени τ кор =R вых C кор была больше, чем 1/2πf в . При этом сигналы высоких частот на выходе ОУ будут шунтироваться C кор и полоса рабочих частот сузится, большей часть весьма значительно, что является существенным недостатком данного вида коррекции. Полученная в этом случае ЛАЧХ показана на рисунке 6.16.

Рисунок 6.16. Частотная коррекция внешним конденсатором


Спад K u ОУ здесь не будет превышать 20дБ/дек, а сам ОУ будет устойчив при введении ООС, поскольку φ никогда не превысит 135°.

Более совершенны корректирующие цепи интегрирующего (запаздывающая коррекция) и дифференцирующего (опережающая коррекция) типов. В общем виде коррекция интегрирующего типа проявляется аналогично действию корректирующей (нагрузочной) емкости. Корректирующая RC цепь включается между каскадами ОУ (рисунок 6.17).


Рисунок 6.17. Частотная коррекция интегрирующего типа


Резистор R 1 является входным сопротивлением каскада ОУ, а сама цепь коррекции содержит R кор и C кор. Постоянная времени этой цепи должна быть больше постоянной времени любого из каскадов ОУ. Поскольку цепь коррекции является простейшей однозвенной RC цепью, то наклон ее ЛАЧХ равен 20дБ/дек, что и гарантирует устойчивую работу усилителя. И в этом случае цепь коррекции сужает полосу рабочих частот усилителя, однако широкая полоса все равно ничего не дает, если усилитель неустойчив.

Устойчивая работа ОУ при относительно широкой полосе обеспечивается коррекцией дифференцирующего типа. Сущность такого способа коррекции ЛАЧХ и ЛФЧХ заключается в том, что ВЧ сигналы проходят внутри ОУ в обход части каскадов (или элементов), обеспечивающих максимальный K u ОУ 0 , ими не усиливаются и не задерживаются по фазе. В результате ВЧ сигналы будут усиливаться меньше, но их малый фазовый сдвиг не приведет к потере устойчивости усилителя. Для реализации коррекции дифференцирующего типа к специальным выводам ОУ подключается корректирующий конденсатор (рисунок 6.18).


Рисунок 6.18. Частотная коррекция дифференцирующего типа


Помимо рассмотренных корректирующих цепей известны и другие (см., например ). При выборе схем коррекции и номиналов их элементов следует обращаться к справочной литературе (например, ).

Амплитудная характеристика усилителя представляет собой за­висимость установившегося значения выходного напряжения от вход­ного. График амплитудной характеристики строится в линейном мас­штабе, рис.2.6.

Рис.2.6. Амплитудная характеристика.

Угол наклона амплитудной характеристики зависит от коэффициента усиления и определяется =arctgК . В рабочей области входных напряжений она обычно прямолинейна. При больших значениях амплитудная характеристика искривляется из-за пе­регрузки усилительного элемента, при малых значениях она от­клоняется вследствие наличия собственных помех усилителя. Обычно сигнал, поступающий на усилитель, не остается неизменным, а ме­няется от U с min до U с max .

Отношение U с max /U с min =Д с называется динамическим диапа­зоном сигнала, который часто задается в децибелах

Д сдБ =20lgU с max /U с min (2.16)

Из амплитудной характеристики видно, что усилитель может усиливать сигнал при U с > U вх min и U с < U в xmax .

Отношение U вх max /U вх min =Д у есть динамический диапазон усилителя. Для безыскаженного усиления должно быть удовлетворено следующее соотношение Д у >Д с .

Собственные помехи U n состоят из нескольких составляющих: наводки, фон и внутренние шумы.

Наводками называют посторонние шумы напряжения, наводимые на цепи усилителя соседними приборами. Устранение наводок достигает­ся экранированием.

Фоном называют напряжение в выходной цепи усилителя с часто­той, кратной частоте сети переменного тока, питающей усилитель. Для устранения фона необходимо улучшить сглаживание напряжения источника питания с помощью стабилизаторов напряжения. Внутренние шумы рассмотрены в последней лекции.

Коэффициент полезного действия

Этот коэффициент равен отношению мощности на выходе усилителя к мощности, отдаваемой источником энергии с напряжением E: η = Pвых/Po, где Po = E·I0 (I0 постоянная составляющая тока).

5 . Операционный усилитель (ОУ) предназначен для выполнения математических операций в аналоговых вычислительных машинах. Первый ламповый ОУ K2W был разработан в 1942 году Л.Джули (США). Он содержал два двойных электровакуумных триода. Первые ОУ представляли собой громоздкие и дорогие устройства. С заменой ламп транзисторами операционные усилители стали меньше, дешевле, надежнее, и сфера их применения расширилась. Первые операционные усилители на транзисторах появились в продаже в 1959 году. Р.Малтер (США) разработал ОУ Р2, включавший семь германиевых транзисторов и варикапный мостик. Требования к увеличению надежности, улучшению характеристик, снижению стоимости и размеров способствовали развитию интегральных микросхем, которые были изобретены в лаборатории фирмы Texas Instruments (США) в 1958 г. Первый интегральный ОУ mА702, имевший рыночный успех, был разработан Р.Уидларом (США) в 1963 году. В настоящее время номенклатура ОУ насчитывает сотни наименований. Операционные усилители выпускаются в малогабаритных корпусах и очень дешевы, что способствует их массовому распространению.

Операционные усилители представляют собой усилители постоянного тока с низкими значениями напряжения смещения нуля и входных токов и с высоким коэффициентом усиления. По размерам и цене они практически не отличаются от отдельного транзистора. В то же время, преобразование сигнала схемой на ОУ почти исключительно определяется свойствами цепей обратных связей усилителя и отличается высокой стабильностью и воспроизводимостью. Кроме того, благодаря практически идеальным характеристикам ОУ реализация различных электронных схем на их основе оказывается значительно проще, чем на отдельных транзисторах. Поэтому операционные усилители почти полностью вытеснили отдельные транзисторы в качестве элементов схем ("кирпичиков") во многих областях аналоговой схемотехники.

Uвых = U1 - U2

На рис.1 дано схемное обозначение операционного усилителя. Входной каскад его выполняется в виде дифференциального усилителя, так что операционный усилитель имеет два входа. В дальнейшем будем, при необходимости, обозначать неинвертирующий вход буквой p (positive - положительный), а инвертирующий - буквой n (negative - отрицательный). Выходное напряжение Uвых находится в одной фазе с разностью входных напряжений:

Чтобы обеспечить возможность работы операционного усилителя как с положительными, так и с отрицательными входными сигналами, следует использовать двухполярное питающее напряжение. Для этого нужно предусмотреть два источника постоянного тока, которые, как это показано на рис. 1, подключаются к соответствующим внешним выводам ОУ. Обычно интегральные операционные усилители работают с напряжением питания +/-15 В. В дальнейшем, рассматривая схемы на ОУ, мы, как правило, не будем указывать выводы питания.

6. Для уяснения принципов действия схем на ОУ и приближенного их анализа оказывается полезным ввести понятие идеального операционного усилителя. Будем называть идеальным операционный усилитель, который имеет следующие свойства:

Бесконечно большой дифференциальный коэффициент усиления по напряжению KU=DUвых /D(U1 - U2) (у реальных ОУ от 1 тыс. до 100 млн.);

Нулевое напряжение смещения нуля Uсм, т.е. при равенстве входных напряжений выходное напряжение равно нулю (у реальных ОУ Uсм, приведенное ко входу, находится в пределах от 5 мкВ до 50 мВ);

Нулевые входные токи (у реальных ОУ от сотых долей пА до единиц мкА);

Нулевое выходное сопротивление (у реальных маломощных ОУ от десятков Ом до единиц кОм);

Коэффициент усиления синфазного сигнала равен нулю;

Мгновенный отклик на изменение входных сигналов (у реальных ОУ время установления выходного напряжения от единиц наносекунд до сотен микросекунд).

Типичная логарифмическая амплитудно-частотная характеристика операционного усилителя

7. Основные схемы включения операционного усилителя:

1.Дифференциальное включение

2.Инвертирующее включение

3.Неинвертирующее включение

На рис. 4 приведена схема дифференциального включения ОУ. Найдем зависимость выходного напряжения ОУ от входных напряжений. Вследствие свойства а) идеального операционного усилителя разность потенциалов между его входами p и n равна нулю. Соотношение между входным напряжением U1 и напряжением Up между неинвертирующим входом и общей шиной определяется коэффициентом деления делителя на резисторах R3 и R4:

Up = U1R4/(R3+R4) (3)

Поскольку напряжение между инвертирующим входом и общей шиной Un = Up, ток I1 определится соотношением:

I1 = (U2 - Up) / R1 (4)

Вследствие свойства c) идеального ОУ I1=I2. Выходное напряжение усилителя в таком случае равно:

Uвых = Up - I1R2 (5)

Подставив (3) и (4) в (5), получим:

(6)

При выполнении соотношения R1R4 = R2R3,

Uвых = (U1 - U2)R2 / R1 (7)

8. При инвертирующем включении неинвертирующий вход ОУ соединяется с общей шиной (рис. 5).

Рис. 5. Инвертирующее включение ОУ

Таким образом, выходное напряжение усилителя в инвертирующем включении находится в противофазе по отношению ко входному. Коэффициент усиления входного сигнала по напряжению этой схемы в зависимости от соотношения сопротивлений резисторов может быть как больше, так и меньше единицы.

Найдем входное сопротивление схемы. Поскольку напряжение на неинвертирующем входе относительно общей шины равно нулю, согласно свойству а) идеального ОУ входной ток схемы I1 = U2 / R1. Следовательно, входное сопротивление схемы Rвх = R1. Поскольку напряжение на неинвертирующем входе усилителя равно нулю, а согласно свойству а) идеального ОУ разность потенциалов между его входами равна нулю, то инвертирующий вход в этой схеме иногда называют виртуальным (т.е. воображаемым) нулем.

9. Неинвертирующее включение

При неинвертирующем включении входной сигнал подается на неинвертирующий вход ОУ, а на инвертирующий вход через делитель на резисторах R1 и R2 поступает сигнал с выхода усилителя (рис. 6). Здесь коэффициент усиления схемы K найдем, положив в (6) U2 = 0, R3 = 0, R4 бесконечно велико. Получим:

Рис. 6. Неинвертирующее включение ОУ

Как видно, здесь выходной сигнал синфазен входному. Коэффициент усиления по напряжению не может быть меньше единицы. В предельном случае, если выход ОУ накоротко соединен с инвертирующим входом, этот коэффициент равен единице. Такие схемы называют неинвертирующими повторителями и изготавливают серийно в виде отдельных ИМС по нескольку усилителей в одном корпусе. Входное сопротивление этой схемы в идеале - бесконечно. Ниже будет показано, что у повторителя на реальном операционном усилителе это сопротивление конечно, хотя и весьма велико.

10. Внутренняя структура операционных усилителей

Для достаточной устойчивости и выполнения математических операций над сигналами с высокой точностью реальный операционный усилитель должен обладать следующими свойствами:

высоким коэффициентом усиления по напряжению, в том числе и по постоянному;

малым напряжением смещения нуля;

малыми входными токами;

высоким входным и низким выходным сопротивлением;

высоким коэффициентом ослабления синфазной составляющей (КОСС);

Операционный усилитель должен быть усилителем постоянного тока (УПТ) с высоким коэффициентом усиления по напряжению и, следовательно, содержать несколько каскадов усиления напряжения. Как будет показано ниже, с ростом числа каскадов усиления напряжения увеличивается опасность нарушения устойчивости ОУ с обратными связями и усложняются цепи коррекции. Даже усилители с тремя каскадами усиления напряжения (например, 140УД2, 153УД1, 551УД1) имеют сложные схемы включения, и разработчики стараются их не применять. Это вызывает необходимость применения усилительных каскадов с очень высоким коэффициентом усиления по напряжению. Большие трудности проектирования усилителей постоянного тока связаны также со смещением нуля ОУ.

Смещение нуля ОУ проявляется в том, что при входном дифференциальном напряжении, равном нулю, выходное напряжение не равно нулю. Обычно определяют смещение нуля, приведенное ко входу, как такое дифференциальное напряжение, которое нужно приложить ко входу усилителя, чтобы его выходное напряжение было бы равно нулю. Смещение нуля по сути является аддитивной погрешностью выполнения математических действий ОУ над входными сигналами. Смещение нуля может иметь существенные температурный и временнoй дрейфы. Операционные усилители на дискретных транзисторах имели неудовлетворительное смещение нуля, связанное с неидентичностью транзисторов. Только применение и усовершенствование интегральной технологии, позволившей изготавливать парные транзисторы дифференциального каскада в едином производственном цикле и на расстоянии несколько микрон друг от друга, привело к существенному снижению смещения нуля и дрейфов.

Блок-схема операционного усилителя, в большой мере удовлетворяющего требованиям, предъявляемым к ОУ, приведена на рис. 7.

Рис. 7. Блок-схема ОУ

11. Повысить параметры дифференциального усилителя в принципе можно простым увеличением сопротивлений резисторов R к и R э, но при этом уменьшится ток покоя транзисторов и, как следствие, ухудшится температурная и временнa я стабильность усилителя. Эффективный путь улучшения характеристик усилителя состоит в замене линейных резисторов источниками тока, обладающими высоким динамическим сопротивлением при достаточно больших токах. В частности, в качестве динамической нагрузки в цепи коллекторов транзисторов дифференциального усилителя широко используется так называемое токовое зеркало , схема которого показана на рис. 9.

Рис. 9. Схема токового зеркала

При таком включении U кэ =U бэ >U кэ.нас. Следовательно, транзистор VТ 1 ненасыщен. Поскольку U бэ1 =U бэ2 , то при хорошо согласованных по параметрам транзисторах I б1 =I б2 =I б и I к1 =I к2 =B Iб, где B - статический коэффициент передачи тока. При этом

I вх = BI б +2I б и I вых = BI б

I вых = BI вх /(B+2) I вх

Токовое зеркало - генератор тока, управляемый током. Чаще всего выходной ток равен управляющему или отличается от него в целое число раз. Токовое зеркало – это схема, предназначенная для копирования через одно активное устройство, контролируя ток в другом активном устройстве цепи, сохраняя постоянный ток на выходе, независимо от нагрузки. "Копируемый" ток может быть и иногда является переменным током. Концептуально, идеальное токовое зеркало – это просто идеальный инвертируюший операционный усилитель, который также меняет направление тока, или это управляемый током источник тока.Токовое зеркало используется для смещения токов и питания активных нагрузок в цепях. Токовые зеркала на транзисторах чрезвычайно широко используются в аналоговых интегральных схемахблагодаря своей простоте (требуются всего два согласованных транзистора) и эффективности. Токовые зеркала обычно используются для того, чтобы «скопировать» один управляющий ток на множество каскадов, и тем самым задать их ток покоя.

Есть три основные характеристики, которые характеризуют текущее зеркало. Первыми из них являются коэффициент передачи (в случае операционного усилителя) или величина выходного тока. Во-вторых, его выходное сопротивление для переменного тока, которое определяет, насколько выходной ток меняется в зависимости от напряжения, приложенного к зеркалу. Третья спецификация – это минимальное падение напряжения на выходе зеркала, необходимого, чтобы заставить ее работать должным образом. Это минимальное напряжение продиктовано необходимостью поддерживать выходной транзистор зеркала в активном режиме.

Простое токовое зеркало обладает одним недостатком: выходной ток несколько изменяется при изменении выходного напряжения, то есть выходное сопротивление схемы не бесконечно. Это связано с тем, что при заданном токе транзистора T1, напряжение Uвэ слегка меняется в зависимости от коллекторного напряжения (проявление эффекта Эрли); иначе говоря, график зависимости коллекторного тока от напряжения между коллектором и эмиттером при фиксированном напряжении между базой и эмиттером не является горизонтальной линией.Практически ток может изменяться приблизительно на 25 % в диапазоне устойчивой работы схемы. широко используют при проектировании интегральных схем

Эффект Миллера - увеличение эквивалентной ёмкости инвертирующего усилительного элемента, обусловленное обратной связью с выхода на вход данного элемента при его выключении. Эффект наиболее явно проявляется в усилителях напряжения, построенных на радиолампах, на биполярных и полевых транзисторах, микросхемах.

Так при коэффициенте усиления по напряжению эффективная электрическая ёмкость, приведённая к взаимной ёмкости между входом и шиной питания, увеличится при включении в раз.

Эффект Миллера в биполярных транзисторах, в схемах с общим эмиттером, где напряжение усиливается в β раз, приводит к значительному увеличению эффективной ёмкости между базой и коллектором (ёмкость Миллера). При этом ухудшаются динамические свойства каскада. Например, для каскада на входе, транзистор сложнее выключить, чем включить. Появляется нагрузочная нелинейность. В радиотехнике увеличивается влияние на предыдущие каскады. В быстродействующих импульсных схемах эффект Миллера может приводить к появлению сквозных токов.

Эффект Миллера может быть значительно ослаблен схемотехническими модификациями. Например, каскодный способ включения транзисторов позволяет значительно уменьшить эффект Миллера. В импульсных и силовых схемах для подавления эффекта используется ряд других способов (схема Бейкера, форсирующая RC-цепь и др).

12. Стандартная схема операционного усилителя

Операционные усилители универсального применения должны обеспечивать значительно больший дифференциальный коэффициент усиления, чем способен дать один каскад. Поэтому они строятся в основном по двухкаскадной схеме. Упрощенная схема "классического" двухкаскадного ОУ mА741 (полная схема включает 24 транзистора) приведена на рис. 10.

Входной каскад выполнен по схеме дифференциального усилителя на p-n-p транзисторах Т 1 и Т 2 . В качестве нагрузки использовано токовое зеркало на n-p-n транзисторах Т 3 и Т 4 . Для выходного тока входного каскада, следовательно, можно записать следующее соотношение:

I д = I к2 -I к1

Рис. 10. Упрощенная схема двухкаскадного ОУ mА741

Благодаря тому, что выходным сигналом дифференциального каскада является разностный ток, синфазные изменения коллекторных токов входных транзисторов взаимно компенсируются, что значительно ослабляет синфазные входные сигналы.

Источник тока эмиттеров выполнен на транзисторе Т 9 . В некоторых ОУ (например, 140УД12) для этого также используется токовое зеркало, причем его входной ток задается сопротивлением внешнего резистора и может им программироваться, что позволяет регулировать параметры ОУ, в частности, потребляемый им ток.

Вторую ступень усиления образует каскад с общим эмиттером на транзисторе Т 6 . Он имеет в качестве нагрузки источник тока на транзисторе Т 10 . Для повышения входного сопротивления этого каскада на его входе включен эмиттерный повторитель на транзисторе Т 5 . Конденсатор С к обеспечивает операционному усилителю частотную характеристику вида, приведенного на рис. 3.

Выходной каскад представляет собой двухтактный комплементарный эмиттерный повторитель на транзисторах Т 7 , Т 8 . Напряжение на участке цепи из двух последовательных диодов, включенных в прямом направлении, обеспечивает малый начальный ток покоя этих транзисторов (режим класса АВ), что позволяет устранить переходные искажения сигнала. Такая схема обеспечивает симметрию выходного сопротивления ОУ при различной полярности выходного напряжения. Как правило, выходной каскад включает цепи защиты от короткого замыкания выхода.

13 . Линейные аналоговые вычислительные схемы на ОУ

Современные цифровые вычислительные машины позволяют с высокой точностью выполнять широкий круг математических операций с числами. Однако, в измерительных и управляющих системах величины, подлежащие обработке, как правило, представляют собой непрерывные сигналы, например, изменяющиеся значения электрического напряжения. В этих случаях приходится применять аналого-цифровые и цифро-аналоговые преобразователи. Такой подход оправдывает себя только тогда, когда требования к точности вычислений настолько высоки, что не могут быть обеспечены с помощью аналоговых вычислителей. Существующие аналоговые вычислители позволяют получить точность не свыше 0,1%. Ниже рассмотрены наиболее важные аналоговые вычислительные схемы на ОУ. Обычно мы будем полагать операционные усилители идеальными. При высоких требованиях к точности выполнения математических операций необходимо учитывать также свойства реальных усилителей.

Операционный усилитель (ОУ) - это усилитель постоянного тока с дифференциальным входом, характеристики которогоблизки к характеристикам так называемого “идеального усилителя". ОУ имеет большой коэффициент усиления по напряжению К>>1 (К = 10 4 - 10 6), большое входное (R вх = 0.1-100 МОм) и малое выходное (R вх = 10-100 Ом) сопротивления.

В линейных усилителях применяют ОУ только с цепями отрицательной обратной связи (ООС), которая уменьшает коэффициент усиления К по напряжению до 1-10 3 , но одновременно с этим уменьшает зависимость К от температуры, напряжения питания, увеличивает R вх.ус и уменьшается R вых.ус. Применение ОУ в усилителях без цепей ООС недопустимо, так какувеличивается опасность нарушения устойчивости ОУ и усложняются цепи коррекции частотной характеристики в широкой полосе частот.

ОУ (рис 15.1.) содержит в качестве первого каскада дифференциальный усилитель. Дифференциальный усилитель имеет высокий коэффициент усиления для разности входных сигналов U 2 - U 1 и низкий коэффициент усиления для синфазных сигналов, т.е. одинаковых сигналов, поданных одновременно на оба входа. Это позволяет уменьшить чувствительность к синфазным сигналам (внешним помехам) и напряжение сдвига, определяемое неидентичностью плеч ОУ.

Рис.15.1. Внутренняя структура операционного усилителя.

За входным каскадом следуют один или несколько промежуточных; они обеспечивают необходимое усиление по напряжению и по току.

Комплементарный выходной каскад должен обеспечивать низкое полное выходное сопротивление операционного усилителя и ток, достаточный для питания ожидаемых нагрузок. В качестве выходного каскада обычно используется простой или комплементарный эмиттерный повторитель.

Для снижения чувствительности схемы к синфазным сигналам и увеличения входного сопротивления ток эмиттера первого дифференциального каскада задается с помощью источника стабильного тока.

Основные параметры операционных усилителей

1. К - собственный коэффициент усиления ОУ (без обратной связи).

2. U сдв - Выходное напряжение сдвига. Небольшое напряжение, возникающее из-за несимметрии плеч ОУ при нулевом напряжении на обоих входах. Обычно U сдв имеет значение 10 - 100 мВ.

3. I см - Входной ток смещения. Ток на входах усилителя, необходимый для работы входного каскада операционного усилителя.

4. I сдв - Входной ток сдвига (). Разность токов смещения появляется вследствие неточного согласования входных транзисторов. .

5. R вх - Входное сопротивление. Как правило, R вх имеет значение до 1-10 мегаом.

6. R вых - Выходное сопротивление. Обычно R вых не превосходит сотен Ом.

7. Косс - Коэффициент ослабления синфазного сигнала. Характеризует способность ослаблять сигналы, приложенные к обоим входам одновременно.


8. Ток потребления. Ток покоя, потребляемый операционным усилителем.

9. Потребляемая мощность. Мощность, рассеиваемая операционным усилителем.

10. Максимальная скорость нарастания выходного напряжения (В/мкс) .

11. U пит. - Напряжение питания.

12. Переходная характеристика. Сигнал на выходе усилителя при подаче на его вход скачка напряжения.

ОУ имеет несколько вариантов схем включения, которые значительно отличаются по своим характеристикам.

Для анализа работы и расчета характеристик различных схем включения ОУ далее необходимо помнить, что, исходя из свойств ДУ:

1. Разность напряжений между входами ОУ очень мала и может быть принята равной нулю.

2. Операционный усилитель имеет высокое входное сопротивление, поэтому потребляет очень небольшой входной ток (до 10 nA).

Основные схемы включения ОУ

В инвертирующем усилителе (рис.15.2.), входной и выходной сигналы сдвинуты по фазе на 180º. Если U вх, положительное то напряжение в точке А, а значит и U д, также станет положительным, а U вых уменьшится, что приведет к уменьшению на инвертирующем входе до величины U д = U вых / К ≈ 0.

Точку А часто называют виртуальной землей , потому, что ее потенциал почти равен потенциалу земли, так как U д, как правило, весьма мало

Рис. 15.2. Инвертирующий усилитель на ОУ

Чтобы получить выражение для коэффициента усиления с обратной связью, учтем, что , т.к.R вх усилителя весьма велико. Так как и , то .

Полагая U д = 0 (так как К → ∞), получим . Коэффициент усиления с обратной связью рассматриваемой схемы равен

. (15.1)

Выходное напряжение инвертировано, о чем говорит и отрицательное значение К ос.

Так как, благодаря обратной связи, в точке А сохраняется приблизительно нулевой потенциал, входное сопротивление схемы инвертирующего усилителя равно R 1 .. Сопротивление R 1 должно быть выбрано так, чтобы не нагружать источник входного сигнала, и, естественно, R ос должно быть достаточно большим, чтобы чрезмерно не нагружать операционный усилитель.

Неинвертирующий усилитель может быть также реализован на ОУ (рис.15.3) с высоким входным сопротивлением, коэффициент усиления которого по напряжению также может быть задан с помощью сопротивлений R 1 и R ос.

Как и ранее, считаем, что , поскольку R вх → ∞.

Напряжение на инвертирующем входе усилителя равно, поэтому

.

15.3. Неинвертирующий усилитель на ОУ

Следовательно, .

Так как U вых = U д · К и U д =U вых / К, при К → ∞ и U д ≈ 0, можно написать, что . Решая уравнение , получим выражение для коэффициента усиления с замкнутой обратной связью K ос , (15.3)

которое справедливо при условии К » K ос.

В схеме повторителя напряжения на ОУ (рис.15.4) U вых обратная связь поступает с выхода усилителя на инвертирующий вход. Так как усиливается разность напряжения на входах ОУ - U д, то можно увидеть, что напряжение на выходе усилителя U вых = U д · К.

Рис.15.4. Повторитель напряжения на ОУ

Выходное напряжение ОУ U вых = U вх + U д. Так как U вых = U д · К, получим, что U д = U вых /К. Следовательно, . Так как К велико (К → ∞), то U вых /К стремится к нулю, и в результате получаем равенство U вх = U вых.

Входное напряжение связано с землей только через входное сопротивление усилителя, которое очень велико, поэтому повторитель может служить хорошим согласующим каскадом.

Усилитель с дифференциальным входом имеет два входа, причем инвертирующий и неинвертирующий входы находятся под одинаковым напряжением, в данном случае равным U ос, так как разность напряжений между инвертирующим и неинвертирующим входами очень мала (обычно меньше 1мВ),.

Рис. 15.5. Усилитель с дифференциальным входом

Если задать U 1 равным нулю и подать входной сигнал по входу U 2 , то усилитель будет действовать как неинвертирующий усилитель, у которого входное напряжение снимается с делителя, образованного резисторами R 2 и R? ос. Если оба напряжения U 1 и U 2 подаются на соответствующие входы одновременно, то сигнал на инвертирующем входе вызовет такое изменение выходного напряжения, что напряжение в точке соединения резисторов R 1 и R ос станет равным U ос, где .

Вследствие того, что усилитель имеет очень высокое входное сопротивление,

имеем .

Решая полученное уравнение относительно U вых, имеем:

Подставляя выражение для U ос, получим:

Если положить R 1 = R 2 и R oc = R´ oc (ситуация, которая наиболее часто встречается), получим . Полярность выходного напряжения определяется большим из напряжений U 1 и U 2 .

Очевидно, что если U 2 на рис.15.5 равно нулю, то усилитель будет действовать по отношению к U 1 как инвертирующий усилитель.

Входное сопротивление схемы ОУ можно определитьследующим образом. К дифференциальному входному сопротивлению ОУ r д приложено напряжение. U д. Благодаря наличию обратной связи это напряжение имеет малую величину.

U д = U вых /K U = U 1 /(1 + K U b), (15.6)

где b = R 1 /(R 1 + R 2) - коэффициент передачи делителя в цепи обратной связи. Таким образом, через это сопротивление протекает только ток, равный U 1 /r д (1 + K U b). Поэтому дифференциальное входное сопротивление, благодаря действию обратной связи, умножается на коэффициент 1 + K U b.

Согласно рис. 12, для результирующего входного сопротивления схемы имеем:

R вх = r д (1 + K U b)||r вх

Эта величина даже для операционных усилителей с биполярными транзисторами на входах превышает 10 9 Ом. Следует однако помнить, что речь идет исключительно о дифференциальной величине ; это значит, что изменения входного тока малы, тогда как среднее значение входного тока может принимать несравненно бoльшие значения.

Рис. 15.6. Схема неинвертирующего усилителя с учетом собственных сопротивлений ОУ.

Выходное сопротивление ОУ операционного усилителя, не охваченного обратной связью, определяется выражением:

(15.7)

При подключении нагрузки происходит некоторое снижение выходного напряжения схемы, вызванное падением напряжения на rвых, которое передается на вход усилителя через делитель напряжения R 1 , R 2 . Возникающее при этом увеличение дифференциального напряжения компенсирует изменение выходного напряжения.

В общем случае выходное сопротивление может иметь достаточно высокое значение (в некоторых случаях от 100 до 1000 Ом. Подключение цепи ОС поволяет уменьшить выходное сопротивление.

Для усилителя, охваченного обратной связью, эта формула принимает вид:

(15.8)

При этом величина U д не остается постоянной, а изменяется на величину

dU д = - dU n = -bdU вых

Для усилителя с линейной передаточной характеристикой изменение выходного напряжения составляет

dU вых = K U dU д - r вых dI вых

Величиной тока, ответвляющегося в делитель напряжения обратной связи в данном случае можно пренебречь. Подставив в последнее выражение величину dU д, получим искомый результат:

(15.9)

Если, например, b = 0,1, что соответствует усилению входного сигнала в 10 раз, а K U = 10 5 , то выходное сопротивление усилителя снизится с 1 кОм до 0,1 Ом. Вышеизложенное, вообще говоря, справедливо в пределах полосы пропускания усилителя f п, Гц. На более высоких частотах выходное сопротивление ОУ с обратной связью будет увеличиваться, т.к. величина |K U | с ростом частоты будет уменьшаться со скоростью 20дБ на декаду (см. рис. 3). При этом оно приобретает индуктивный характер и на частотах более f т становится равным величине выходного сопротивления усилителя без обратной связи.

Динамические параметры ОУ, характеризующие быстродействие ОУ, можно разделить на параметры для малого и большого сигналов. К первой группе динамических параметров относятся полоса пропускания f п, частота единичного усиления f т и время установления t у. Эти параметры называются малосигнальными, т.к. они измеряются в линейном режиме работы каскадов ОУ (DU вых < 1В).

Ко второй группе относятся скорость нарастания выходного напряжения r и мощностная полоса пропускания f р. Эти параметры измеряются при большом дифференциальном входном сигнале ОУ (более 50 мВ). Некоторые из этих парамеров рассмотрены выше. Время установления отсчитывается от момента подачи на вход ОУ ступеньки входного напряжения до момента, когда в последний раз станет справедливым равенство |U вых.уст - U вых(t) | = d, где U вых.уст - установившееся значение выходного напряжения, d - допустимая ошибка.

Рабочая полоса частот или полоса пропускания ОУ определяется по виду амплитудно-частотной характеристики, снятой при максимально возможной амплитуде неискаженного выходного сигнала. Вначале на низких частотах устанавливают такую амплитуду сигнала от генератора гармонических колебаний, чтобы амплитуда выходного сигнала U вых.макс немного не доходила до границ насыщения усилителя. Затем увеличивают частоту входного сигнала. Мощностная полоса пропускания f р соответствует значению U вых.макс равному 0,707 от первоначального значения. Величина мощностной полосы пропускания снижается при увеличении емкости корректирующего конденсатора.

Эксплуатационные параметры ОУ определяют допустимые режимы работы его входных и выходных цепей и требования к источникам питания, а также температурный диапазон работы усилителя. Ограничения эксплуатационных параметров обусловлены конечными значениями пробивных напряжений и допустимыми токами через транзисторы ОУ. К основным эксплуатационным параметрам относятся: номинальное значение питающего напряжения U п; допустимый диапазон питающих напряжений; ток, потребляемый от источника I пот; максимальный выходной ток I вых.макс; максимальные значения выходного напряжения при номинальном питании; максимально-допустимые значения синфазных и дифференциальных входных напряжений

Амплитудно-частотная характеристика операционного усилителя является важным фактором, от которого зависит устойчивость работы реальных схем с таким усилителем. В большинстве операционных усилителей отдельные каскады соединены между собой по постоянному току гальваническими связями, поэтому эти усилители не имеют спада усиления в области низких частот и у них необходимо анализировать спад коэффициента усиления с возрастанием частоты.

Рис.15.7. АЧХ операционного усилителя

На рис.15.7. показана типичная частотная характеристика операционного усилителя.


Рис. 15.8. Упрощенная эквивалентная схема ОУ

При возрастании частоты емкостное сопротивление падает, что приводит к уменьшению постоянной времени τ = R н* С. Очевидно, должна существовать частота, при превышении которой напряжение на выходе U вых окажется меньше, чем КU д.

Выражение для коэффициента усиления К на любойчастоте:

имеет вид , где К - коэффициент усиления без обратной связи на низких частотах; f - рабочая частота; f 1 - граничная частота или частота при 3 дБ, т.е. частота, на которой К(f) на 3 дБ ниже К, или равен 0,707·А.

Если, как это обычно бывает, R н » R вых, то .

Обычно амплитудно-частотная характеристика дается в общем виде. как:

. (15.10)

где f - интересующая нас частота, в то время как f 1 - фиксированная частота, которая называется граничной частотой и является характеристикой конкретного усилителя. С ростом частоты коэффициент усиления по напряжению падает. Кроме того, из выражения для θ видно, что при изменении частоты, фаза выходного сигнала сдвигается относительно фазы входного; - выходной сигнал отстает по фазе от входного.

Добавление отрицательной обратной связи так, например, как это сделано в инвертирующем или неинвертирующем усилителях, увеличивает эффективную полосу пропускания операционного усилителя.

Чтобы убедиться в этом, рассмотрим выражение для коэффициента усиления без обратной связи усилителя со спадом 6дБ / октава (при двукратном увеличении частоты):

, где К(f) - коэффициент усиления без обратной связи на частоте f; А - коэффициент усиления без обратной связи на низких частотах; f 1 - сопрягающая частота. Подставляя это соотношение в выражение для коэффициента усиления при наличии обратной связи , получим

. (15.11)

Это выражение можно переписать в виде , где f 1 oc = f 1 (1 + Аβ); K 1 - коэффициент усиления с замкнутой обратной связью на низких частотах; f 1oc - граничная частота при наличии обратной связи.

Граничная частота при наличии обратной связи равна граничной частоте без обратной связи, умноженной на (1 + Кβ) > 1, так что эффективная ширина полосы пропускания действительно увеличивается при использовании обратной связи. Это явление показано на рис.8, где f 1oc > f 1 для усилителя с коэффициентом усиления равным 40 дБ.

Если скорость спада усилителя составляет 6дБ/октава, произведение коэффициента усиления на полосу пропускания постоянно: Kf 1 = const. Чтобы убедиться в этом, умножим идеальный коэффициент усиления на низких частотах на верхнюю частоту среза того же усилителя при наличии обратной связи.

Тогда получим произведение усиления на полосу пропускания:

, где К - коэффициент усиления без обратной связи на низких частотах.

Если раньше было показано, что для увеличения полосы пропускания с помощью обратной связи следует уменьшить коэффициент усиления, то теперь выведенное соотношение дает возможность узнать, какой частью коэффициента усиления необходимо пожертвовать для получения желаемой полосы пропускания.

Схема замещения операционного усилителя позволяет учитывать влияние неидеальности усилителя на характеристики схемы. Для этого удобно представить усилитель полной схемой замещения, содержащей существенные элементы неидеальности. Полная схема замещения ОУ для малых медленных изменений сигналов представлена на рис. 15.9.

Рис. 15.9.. Схема замещения операционного усилителя для малых сигналов

У операционных усилителей с биполярными транзисторами на входе входное сопротивление для дифференциального сигнала r д составляет несколько мегаом, а входное сопротивление для синфазного сигнала r вх несколько гигаом. Входные токи, определяемые этими сопротивлениями, имеют величину порядка нескольких наноампер. Существенно бoльшие значения имеют постоянные токи, протекающие через входы операционного усилителя и определяемые смещением транзисторов дифференциального каскада. Для универсальных ОУ входные токи находятся в пределах от 10 нА до 2 мкА, а для усилителей со входными каскадами, выполненными на полевых транзисторах, они составляют доли наноампер.

Параметры операционных усилителей

Так как ОУ является универсальным устройством, то для описания его свойств используется большое число параметров.

1. Коэффициент усиления К равен отношению выходного напряжения к вызвавшему это приращение дифференциальному входному сигналу при отсутствии обратной связи (составляет 10 3- 10 7) и определяется при холостом ходе на выходе. К = U вых /U вх.д.

2. Напряжение смещения нуля U cm показывает, какое напряжение необходимо подать на вход ОУ для того, чтобы на выходе получить U вых = 0 (составляет 0,5-0,15 мВ). Это является следствием неточного согласования напряжений эмиттер-база входных транзисторов.

3. Входной ток I вх определяется нормальным режимом работы входного дифференциального каскада на биполярных транзисторах. Это ток базы входного транзистора ДУ. Если в дифференциальном каскаде используются полевые транзисторы, то это токи утечек.

При подключению к входам ОУ источников сигнала с разными внутренними сопротивлениями, создаются различные падения напряжений на этих сопротивлениях токами смещения. Появившийся дифференциальный сигнал, изменяет входное напряжение. Для его уменьшения, сопротивления источников сигнала должны быть одинаковы.

4. Разность входных токов DI вх равна разности значений токов, протекающих через входы ОУ, при заданном значении выходного напряжения, составляет 0,1-200 нА.

5. Входное сопротивление R bx (сопротивление между входными выводами) равно отношению приращения входного напряжения к приращению входного тока на заданной частоте сигнала. R bx определяется для области низких частот. В зависимости от характера подаваемого сигнала входное сопротивление бывает дифференциальное (для дифференциального сигнала) и синфазное (для синфазного сигнала).

Дифференциальное входное сопротивление - это полное входное сопротивление со стороны любого входа, когда другой вход соединен с общим выводом, составляет десятки кОм - сотни МОм. Такое большое R bx получается за счет входного ДУ и стабильного источника постоянного напряжения. Синфазное входное сопротивление - это сопротивление между замкнутыми выводами входов и землей. Оно характеризуется изменением среднего входного тока при приложении ко входам синфазного сигнала и на несколько порядков выше R вх диф.

6. Коэффициент ослабления синфазного сигнала К осл сф определяется как отношение напряжения синфазного сигнала, подаваемого на оба входа, к дифференциальному входному напряжению, вызывающему тоже значение выходного напряжения. Коэффициент ослабления показывает во сколько раз коэффициент усиления дифференциального сигнала больше коэффициента усиления синфазного входного сигнала и составляет 60-120 дБ:

. (15.16)

С ростом коэффициента ослабления синфазного сигнала точнее можно выделить дифференциальный входной сигнал на фоне синфазной помехи, тем лучше качество ОУ. Измерения проводят в диапазоне низких частот.

7. Выходное сопротивление R вых определяется отношением приращения выходного напряжения к приращению активной составляющей выходного тока при заданном значении частоты сигнала и составляет единицы-сотни Ом.

8. Температурный дрейф напряжения смещения равен отношению максимального изменения напряжения смещения к вызвавшему его изменению температуры и оценивается в мкВ/град .

Температурные дрейфы напряжения смещения и входных токов являются причиной температурных погрешностей устройств с ОУ.

9. Коэффициент влияния нестабильности источника питания на выходное напряжение показывает изменение выходного напряжения при изменении напряжений питаний на 1 В и оценивается в мкВ/В.

10. Максимальное выходное напряжение U вых макс определяется предельным значением выходного напряжения ОУ при заданном сопротивлении нагрузки и напряжении входного сигнала, обеспечивающим стабильную работу ОУ и искажения не превышающие заданного значения. U вых макс на 1-5 В ниже напряжения питания.

11. Максимальный выходной ток I вых макс ограничивается допустимым коллекторным током выходного каскада ОУ.

12. Потребляемая мощность - мощность, рассеиваемая ОУ при отключенной нагрузке.

13. Частота единичного усиления f 1 - это частота входного сигнала, при которой коэффициент усиления ОУ равен 1: |K(f 1)| = l. У интегральных ОУ частота единичного усиления имеет предельное значение 1000 МГц. Выходное напряжение на этой частоте ниже, чем для постоянного тока примерно в 30 раз.

14. Частота среза f c ОУ - частота, на которой коэффициент усиления снижается в раз. Она оценивает полосу пропускания ОУ и составляет десятки МГц.

15. Максимальная скорость нарастания выходного напряжения V макс определяется наибольшей скоростью изменения выходного напряжения ОУ при действии на входе импульса прямоугольной формы с амплитудой равной максимальному значению входного напряжения и лежит в пределах 0,1-100 В/мкс. При воздействии максимального входного напряжения выходной каскад ОУ попадает в область насыщения по обеим полярностям. Этот параметр указывается для широкополосных и импульсных устройств на основе ОУ и приводит к наличию фронтов выходного сигнала с конечными значениями длительности. V макс характеризует быстродействие ОУ в режиме большого сигнала.

16. Время установления выходного напряжения t yc т (время затухания переходного процесса) - это время необходимое для возвращения усилителя из состояния насыщения по выходу в линейный режим.

Время установления - это время в течение которого после скачка входного напряжения, выходное напряжение отличается от установившегося значения на величину допустимой относительной погрешности dU вых. За время установления выходное напряжение ОУ при воздействии входного напряжения прямоугольной формы изменяется от уровня 0,1 до уровня 0,9 установившегося значения.

17. Напряжение шумов, приведенное ко входу, определяется действующим значением напряжения на выходе усилителя при нулевом входном сигнале и нулевом сопротивлении источника сигнала деленным на коэффициент усиления ОУ. Спектральная плотность шумов оценивается как корень квадратный из квадрата приведенного напряжения шума деленного на полосу частот, в которой выполнено измерение напряжения шума. Размерность данного параметра . В ТУ на ОУ иногда задают коэффициент шума (дБ), определяемый как отношение приведенной мощности шума усилителя, работающего от источника с внутренним сопротивлением R г, к мощности шума активного сопротивления

, (15.17)

, (15.18)

где U ш - приведенное напряжение шумов при R г =0;

4kTR г - спектральная плотность теплового шума резистора.

Требования, предъявляемые к параметрам ОУ, зависят от выполняемых им функций. Желательно во всех практических случаях уменьшить погрешность выполняемых операций, повысить надежность, быстродействие. Одновременное улучшение всех параметров выдвигает противоречивые требования к схеме и ее изготовлению. Все это объясняется большим разнообразием ОУ, у которых оптимизированы лишь конкретные параметры за счет ухудшения других.

Так в измерительной аппаратуре используются прецизионные ОУ, обладающие большим коэффициентом усиления, большим входным сопротивлением, малым напряжением смещения нуля и малыми шумами. А быстродействующие ОУ должны обладать большой скоростью нарастания выходного напряжения, большой полосой пропускания и малым временем установления выходного напряжения. Такие ОУ нашли применение в импульсных и широкополосных усилительных устройствах и в устройствах аналого-цифровых преобразователей.

Для создания компараторов, которые служат для сравнения мгновенных значений двух напряжений, используются скоростные ОУ, работающие в режиме переключения.

Идеальный ОУ будет смоделирован для PSpice как усилитель с высоким входным сопротивлением, нулевым выходным сопротивлением и высоким коэффициентом усиления по напряжению. Типичные значения этих параметров показаны на рис. 5.1, где R i =1 ГОм; А =200000 и v 0 =A (v 2 –v 1). Обратите внимание, что напряжение v 1 относится к инвертирующему входу, a v 2 - к неинвертирующему. Эта модель будет служить для анализа на постоянном токе и при низкой частоте. При необходимости мы будем изменять модель, учитывая другие свойства ОУ.

Рис. 5.1. Идеальный операционный усилитель


Хотя в применении PSpice для анализа простых схем на ОУ нет необходимости, желательно посмотреть, какую информацию дает программа даже в этих ситуациях. Имеются также некоторые ограничения, которые заслуживают нашего внимания.

На рис. 5.2, а показана схема включения ОУ с использованием отрицательной обратной связи по напряжению. Резистор обратной связи R 2 включен между выходом и инвертирующим входом, при этом неинвертирующий вход заземлен. На рис. 5.2, б приведен вариант такой схемы для PSpice.

Рис. 5.2. Усилитель с отрицательной обратной связью по напряжению на базе идеального ОУ: а) схема усилителя; б) модель усилителя для PSpice

Входной файл для анализа схемы:

Проведите анализ и рассмотрите результаты, полученные в выходном файле. Убедитесь, что V(3)/VS=-9,999. Коэффициент усиления очень близок к -10 и может быть приближенно аппроксимирован выражением v 0 /v s =–R 2 /R 1 . Используя метод узловых потенциалов, запишите уравнения, необходимые, чтобы получить значение v 0 /v s . Убедитесь, что результаты зависят от значения А и что аппроксимация верна только тогда, когда А приближается к бесконечному значению.

В результате анализа должно получиться значение входного сопротивления R in =1 кОм. Можете вы это объяснить? Не забудьте, что мы можем считать оба входа ОУ заземленными, и при этом входное сопротивление оказывается равным R 1 .

Неинвертирующий идеальный операционный усилитель

На рис. 5.3 показана другая простая схема на ОУ. В ней напряжение v s подключено к неинвертирующему (+) входу. На рис. 5.4 показана модель и приведены параметры элементов.

Рис. 5.3. Неинвертирующий усилитель на базе идеального ОУ


Рис. 5.4. Модель неинвертирующего усилителя на базе идеального ОУ


Входной файл для этого случая:

Ideal Operational Amplifier, Noninverting

Убедитесь, что V(3)/VS=10 в соответствии с формулой v 0 /v s =-R 2 /R 1 и R in =2,0Е13. Почему настолько велико входное сопротивление? Так как идеальный ОУ почти не потребляет тока, источник сигнала v s работает практически в режиме холостого хода.

Операционный усилитель с дифференциальным входом

Если входной сигнал подается между инвертирующим и неинвертирующим входами, на выходе ОУ получается усиленная разность входных напряжений. Чтобы упростить анализ, примем, что на рис. 5.5 R i =R 3 =5 кОм и R 2 =R 4 =10 кОм. Модель PSpice для идеального ОУ с внешними элементами приведена на рис. 5.6. Входной файл имеет вид:

Рис. 5.5. Усилитель с дифференциальным входом на базе идеального ОУ


Рис. 5.6. Модель усилителя с дифференциальным входом на базе идеального ОУ


Анализ показывает, что выходное напряжение V(5)=14 В. Используя метод узловых потенциалов для анализа идеального ОУ, убедитесь, что

согласуется с нашими результатами. Вычисления, проведенные вручную, помогут лучше понять работу схемы. Начните с определения напряжения на неинвертирующем входе ОУ. Его легко определить, если вы вспомните, что входы ОУ не потребляют тока. Напряжение v b подается на делитель напряжения и на его выходе получается напряжение v + =6,667 В, это означает, что также составляет 6,667 В (фактически PSpice дает 6,666 В). При использовании этого напряжения вы можете легко найти токи через R 1 и R 2 . Выходной файл показан на рис. 5.7.

**** 07/02/99 16:11:55 ******** Evaluation PSpice (Nov 1998) *********
Op Amp Giving Voltage Difference Output
**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1) 3.0000 (2) 6.6666 (3) 6.6667 (4) 10.0000
TOTAL POWER DISSIPATION 4.47E-03 WATTS
**** VOLTAGE-CONTROLLED VOLTAGE SOURCES
**** SMALL-SIGNAL CHARACTERISTICS
INPUT RESISTANCE AT VB = 1.500E+04
OUTPUT RESISTANCE AT V(5) = 0.000E+00

Рис. 5.7. Выходной файл с результатами анализа схемы на рис. 5.6


Не забывайте, что PSpice не должен использоваться просто для получения численного результата. Надеемся, что после решения у вас возникнет много вопросов, анализ которых поможет вам больше узнать о работе исследуемых устройств.

Амплитудно-частотная характеристика операционного усилителя

При получении частотных характеристик ОУ следует использовать модель, учитывающую изменение его параметров при увеличении частоты. Для ОУ с типовыми характеристиками мы предлагаем модель, представленную на рис. 5.8. Исследуем модель, которая включает R in =1 Мом; R 0 =50 Ом; R i1 =1 кОм; С= 15,92 мкФ и EG с коэффициентом усиления по напряжению A 0 =100000. Последний параметр представляет собой низкочастотный коэффициент усиления или коэффициент усиления по постоянному току при разомкнутой обратной связи. При использовании этих значений, получим выходное напряжение на частоте f c = 10 Гц, при которой выходное напряжение снижается на 3 дБ.

Рис. 5.8. Модель ОУ при частоте 10 Гц


Чтобы проверить расчет, нам необходимо получить коэффициент усиления при разомкнутой обратной связи. Это означает, что резистор обратной связи R 2 должен быть удален из схемы, но так как узел 5 должен иметь два элемента, связанных с ним, включим между узлом 5 и «землей» типовой резистор нагрузки R L =22 кОм (см. рис. 5.9):

Op Amp Model with 3-Frequency at 10 Hz for Open-Loop Gain

Рис. 5.9. Использование модели на рис. 5.8 для получения АЧХ усилителя с обратной связью


Выполните моделирование и получите в Probe график частотной характеристики выходного напряжения V(5), показанный на рис. 5.10. Как и было предсказано, выходное напряжение падает от v 0 =100 В при f =1 Гц до v 0 =70 В при f =10 Гц, частоте, при которой коэффициент усиления падает на 3 дБ. Она представляется символом f c . Выходное напряжение около 100 В соответствует коэффициенту усиления при разомкнутой обратной связи A 0 =100000.

Рис. 5.10. АЧХ усилителя без обратной связи


Рис. 5.11. Характеристика Боде для схемы на рис. 5.9


Для анализа другой особенности модели ОУ, удалите график V(5) и постройте график зависимости

20·lg(V(5)/V(2)).

Из этого графика (рис. 5.11) ясно видно, что спад частотной характеристики составляет 20 дБ/дек. Возвратитесь входному файлу и добавьте следующую строку для введения в схему резистора R 2:

При этом получается практическая схема с выходным напряжением, ограниченным приемлемым значением. В Probe получается график v 0 со среднечастотным значением, близким к 25 мВ. Получите график Боде для отношения выходного напряжения к входному, как вы уже делали для схемы без обратной связи. Результаты показаны на рис. 5.12.

Рис. 5.12. График Боде для усилителя с обратной связью

Убедитесь, что коэффициент усиления на средних частотах равен А mid =27,96 дБ и снижается на 3 дБ при f =39,3 кГц. Чтобы проверить правильность этих значений, вспомните, что коэффициент усиления равен единице при частоте f t =A 0 ·f c . В модели задано типичное значение частоты f t = 1 МГц. При этом также принимается, что f с =10 Гц, что дает A 0 =1Е5. Значение f c установлено при R i1 =1 кОм и С= 15,92 мкФ.

Обратите внимание, что ширина полосы частот при замкнутой обратной связи CLBW=f t β, а

В нашем примере β=10/250=0,04 и f t β=40 кГц. Это приближенное значение находится в хорошем согласии с нашей моделью, которая дала f =39,33 кГц для частоты, при которой происходит снижение на 3 дБ. В качестве дальнейшего исследования модели измените значение резистора обратной связи на R 2 =15 кОм, и снова проведите анализ. Убедитесь, что значение А mid =7,959 дБ и f 3дБ =393,6 кГц. А какое значение для f 3дБ даст использование приближенной формулы и нового значения β?

Использование подсхем при моделировании операционных усилителей

Модель, которую мы использовали для ОУ в предыдущем примере, содержит достаточно много элементов, поэтому целесообразно оформить ее в виде подсхемы (subcircuit). При этом мы одновременно познакомимся с этим инструментом PSpice. Модель показана на рис. 5.13.

Рис. 5.13. Подсхема ОУ с обозначением узлов


Отметим, что узлы и элементы маркированы с использованием символов нижнего регистра. Это условие не обязательно, так как PSpice не учитывает регистра. То есть верхний и нижний регистры могут взаимозаменяться. Однако чтобы проще было идентифицировать подсхему и ее элементы, мы выбрали для меток узлов нижний регистр. Мы назначили номера и символы таким образом, чтобы не путать внутренние узлы подсхемы с внешними. Подсхема задается как независимая часть входного файла, но не является законченным входным файлом сама по себе. Команды описания подсхемы будут следующими:

Описание любой подсхемы начинается с команды .subckt. Первым элементом списка является имя подсхемы, которое в данном случае записано как opamp. Оно сопровождается набором узлов, которые связывают подсхему с остальной частью входного файла. Вы можете думать о них как об узлах, доступных для внешней части схемы. В данном примере - это узлы т, р и v 0 . Опорный узел всегда обозначается как 0, и его не обязательно включать в перечень узлов.

Элементы в подсхеме задаются обычным способом. Так как подсхема не является законченным входным файлом, она может содержать «висящие» узлы. Команды ввода элементов выровнены для упрощения их идентификации, но это не обязательно. Команда .ends отмечает конец описания подсхемы.

Теперь мы готовы рассмотреть новую версию анализа ОУ с использованием подсхемы. Законченная схема показана на рис. 5.9 и повторена на рис. 5.14. После приобретения некоторого опыта вы, возможно, захотите рисовать подсхему в виде прямоугольника или треугольника. Как видно из рисунка, узлы m, р и v 0 имеют новые обозначения. Они получили метки 1, 2 и 3 соответственно. Чтобы использовать подсхему, основной входной файл должен содержать команду ввода подсхемы:

Рис. 5.14. Модель, показывающая подсхему в составе общей схемы для вызова


Здесь X обозначает обращение к подсхеме. Узлы 1, 2 и 3 приводятся в порядке, соответствующем узлам m , p и v 0 в подсхеме. Это позволяет подсхеме получать обозначение узла, передаваемое от основного схемного файла. Инструкция также содержит имя подсхемы opamp. Теперь рассмотрим весь входной файл:

Op Amp Analysis Using Subcircuit

Выполните анализ и убедитесь, что он дает тот же результат, что и предыдущий анализ, в котором подсхема не использовалась.

Дифференцирующие схемы на базе операционного усилителя

Дифференцирующая схема, построенная на базе идеального ОУ, показана на рис. 5.15, а. Поскольку инвертирующий вход заземлен, v c =v . Легко показать, что при R =0,5 Ом

Таким образом, когда входное напряжение имеет форму треугольника, выходное напряжение должно быть прямоугольным (рис. 5.15, б). Используйте приведенный ниже входной файл, чтобы проверить этот вывод:

Differentiator Circuit v 1 0 PWL (0, 0 1s ,1V 2s,0)

Рис. 5.15. Схема дифференциатора на базе ОУ


Выполните анализ и убедитесь, что выходное напряжение имеет прямоугольную форму с чередующейся полярностью и значениями напряжения от -1,0 В до +1 В. Эта инверсия происходит также и в ОУ. Постройте на одном графике временные зависимости для v(3) и v(1). Сравните ваши результаты с рис. 5.16. Обратите внимание, что команда входного файла для введения С не должна быть задана как

Рис. 5.16. График входного и выходного напряжений в схеме на рис. 5.15


В этом случае символ F будет восприниматься программой не как фарада, а как префикс и команда будет задавать значение 2 fF (фемтофарады). Если вы хотите, чтобы в записи всегда отражались единицы измерения, то вы можете использовать альтернативную форму записи:

Интегрирующие схемы ha базе операционных усилителей

Устройства, дуальные дифференцирующим схемам, называются интегрирующими схемами. На рис. 5.17, а резистор R и конденсатор С поменялись местами относительно рис. 5.15, а. Новая схема и есть интегратор (инвертирующий). Чтобы проверить его свойства, используйте входное напряжение (форма которого показана на рис. 5.17, б) и входной файл:

v 1 0 PWL (0 0 0.01ms, -1V 1s, -1V 1000.01ms, 0V 2s,0V 2000.01ms, 1V

Рис. 5.17. Схема интегратора на базе ОУ


Обратите внимание, что «+» на строке 3 файла схемы указывает на продолжение команды, обычно длинной, которую необходимо перенести на следующую строку для удобства чтения.

Выполните анализ и получите график v(1) вместе с графиком v(3). Убедитесь, что выходное напряжение начинается в момент фронта входного сигнала, линейно изменяется до максимального напряжения в 1 В, затем линейно спадает, достигая нуля между 2-й и 3-й с. Сравните ваши результаты с рис. 5.18.

Рис. 5.18. График входного и выходного напряжений в схеме на рис. 5.17


В качестве дополнительного упражнения, используйте входное напряжение такой же формы, как в задаче, посвященной дифференциатору, и найдите вид выходного напряжения. Проверьте, что этот график имеет форму параболы с установившимся значением -1 В, приведенную на рис. 5.19.

Рис. 5.19. График входного и выходного напряжений в схеме на рис. 5.17 при треугольной форме входного воздействия

Отклик на единичную функцию

Единичная ступенчатая функция показана на рис. 5.20, б. По определению она остается нулевой до t =0, а начиная с этого момента становится равной 1 В. Параметры элементов для схемы, показанной на рис. 5.20, a: R= 2 Ом, R 1 =1 Ом и С =0,125 Ф. Анализ схемы показывает, что

v 0 (t ) = (3 – 2e -4t)u (t ).

Рис. 5.20. Исследование реакции схемы с одним накопителем на ступенчатое воздействие: а) схема; б) временная зависимость входного воздействия


Перед началом анализа на PSpice полезно нарисовать график этой временной зависимости, чтобы представлять себе форму искомого напряжения. Входной файл:

Response to Unit Step Function
vs i 0 PWL (0,0 1us ,1V 5s, 1V)

После запуска анализа в программе Probe используем курсор, чтобы убедиться, что при t =0,5 с, V 0 =2,73 В. Это соответствует значению, вычисленному из приведенного выше уравнения. Результаты анализа приведены на рис. 5.21.

Рис. 5.21. Результат анализа схемы на рис. 5.20, а

Цепи c двумя однотипными операционными усилителями

Когда в схеме имеется несколько однотипных устройств, намного проще работать, представив их в виде подсхем. Предположим, что мы собираемся сравнить частотные характеристики для двух ОУ, схемы которых мы предварительно рассмотрели (в разделе «Амплитудно-частотные характеристики операционного усилителя»). Вспомним, что схемы были подобны за исключением того, что в первом случае R 2 =240 Ом, а во втором случае R 2 =15 Ом. Их частотные характеристики удобнее сравнивать на общем графике.

Чтобы добиться этого, схему просто расширяют так, чтобы оба случая были исследованы одновременно. Мы определим ОУ подсхемой и используем рис. 5.22, чтобы обеспечить простую идентификацию узлов. Усилители Ор1 и Ор2 показаны просто в виде треугольников, поскольку вы уже знакомы с их моделью, нет необходимости повторять внутренние подробности. Теперь легко получить входной файл:

Double Op Amp Circuit for Gain-Bandwidth Analysis

Рис. 5.22. Схема с двумя ОУ


Подсхема описывается так же, как и прежде. После создания подсхемы вы можете просто скопировать ее в любой входной файл, где она необходима. В данном случае она вызывается дважды - сначала командой X1 , а затем командой X2. Список узлов, используемых в каждом случае, такой же, как на рис. 5.22.

Выполните анализ и затем получите графики

20·lg(V(3)/V(2)),

20·lg(V(6)/V(5)).

Используйте режим курсора, чтобы найти отметку 3 дБ для первого графика. Обратите внимание, что при включении режима курсора автоматически выбирается первый график. Убедитесь, что А mid =27,96 дБ и f 3дБ =39,4 кГц.

Исследуйте теперь второй график. Нажмите Ctrl и → (стрелку вправо), чтобы перевести курсор на второй график. Затем двигайтесь по второму графику, пока не достигнете нужной точки. Обратите внимание, что второй график показывает А mid =7,96 дБ, что на 20 дБ меньше, чем у первого. Искомая частота будет соответствовать коэффициенту усиления 4,96 дБ (7,96–3,00). Убедитесь, что это дает f 3дБ =394 кГц. Эти результаты соответствуют полученным в предыдущих примерах. Сравните полученный вами двойной график с рис. 5.23.

Рис. 5.23. Результат анализа схемы с двумя ОУ

Активные фильтры

Для получения более крутых границ полосы пропускания, чем у простых однополюсных фильтров, содержащих, например, только один конденсатор, могут применяться высокочастотные, низкочастотные и полосовые активные фильтры. Классическим примером таких устройств являются фильтры Баттерворта.

ОУ часто используются при разработке активных фильтров, поскольку получить усилители с высокими добротностями на базе ОУ достаточно просто. Мы не будем касаться теории фильтров в нашем обсуждении. Если вы изучаете активные фильтры впервые, обратитесь к другим источникам, чтобы лучше оценить элегантность и простоту этих схем.

Низкочастотный фильтр Баттерворта второго порядка

Воспользуемся таблицами нормированных многочленов Баттерворта, чтобы найти коэффициенты для фильтра второго порядка:

s ² + 1,414s + 1.

Фильтр второго порядка показан на рис. 5.24. Для вводного примера найдем элементы R 1 , R 2 , R и С для фильтра Баттерворта с частотой среза f c = 5 кГц. Как обычно, в качестве частоты среза принимается частота, при которой характеристика снижается на 3 дБ. Согласно теории, низкочастотный коэффициент усиления задается выражением:

A vo = 3 – 2k,

где k представляет собой коэффициент затухания, определенный как половина коэффициента при s ² из таблицы полиномов Баттерворта (см. Hillburn and Johnson. Manual of Active Filter Designs, McGraw-Hill, 1973). Для этого примера k =0,707 и

A v0 = 3 - 1,414 = 1,586.

Рис. 5.24. Низкочастотный фильтр Баттерворта второго порядка


Допустим, что R 1 =10 кОм. Из выражения

получаем R 2 =5,86 кОм. Если положить R= 1 кОм, из выражения f c =1/(2πRC ) найдем С =31,83 нФ. Чтобы проверить теорию Баттерворта, используем идеальную модель ОУ в качестве подсхемы, как показано на рис. 5.25. Для этого создайте следующий входной файл:

Second-Order Butterworth Filter

Рис. 5.25. Подсхема для идеального ОУ


Проведите анализ и получите график V(5)V(1). Выясните, что А v0 =1,586, что соответствует нашему расчету. Затем удалите этот график и получите график зависимости

20·lg(V(5)/(V(1)·1,587В)).

Убедитесь, что f c =5 кГц. Этот фильтр второго порядка должен иметь вдвое большую крутизну спада, чем фильтр первого порядка. Вспомним, что фильтр первого порядка имеет скорость спада 20 дБ/дек. Убедитесь, что при f =10 кГц A v =12,31 дБ, а при f =100 кГц A v =52,05 дБ, что составляет приблизительно 40 дБ/дек. Этот график показан на рис. 5.26.

Рис. 5.26. График Боде для низкочастотного фильтра Баттерворта второго порядка

Низкочастотный фильтр Баттерворта четвертого порядка

В качестве другого примера рассмотрим фильтр Баттерворта четвертого порядка, предназначенный для работы на частоте f c =1 кГц. Из таблицы полиномов находим коэффициенты:

(s ² + 0,765s + 1)·(s ² + 1,848s + 1).

Коэффициент затухания k равен половине коэффициента при s в каждом квадратном уравнении, давая k 1 =0,383 и k 2 =0,924:

A v1 = 3 – 2k 1 = 3 – 0,765 = 2,235 и A v2 = 3 – 2k 2 = 1,152.

Для первого каскада примем R 1 =10 кОм и с помощью уравнения

найдем R 2 =12,35 кОм. Приняв для второго каскада R 1 =10 кОм, получим R 2 =1,52 кОм. При f c =1 кГц, если положить R =1 кОм, С =0,16 мкФ. Схема показана на рис. 5.27. Поскольку каждый элемент должен иметь уникальное обозначение, вычисленные здесь значения R и С относятся к соответствующим резисторам и конденсаторам каждого из каскадов. Входной файл при этом:

Fourth-Order Butterworth Filter

Рис. 5.27. Полосовой фильтр Баттерворта четвертого порядка


Выполните анализ и затем получите совместный график для V(5)/V(1), (V)9/V(5), и V(9)/V(1). Они представляют собой коэффициенты усиления первого и второго каскадов и полный коэффициент усиления соответственно. Так как они выражены не в децибелах, вы легко сможете проверить, что A v1 =2,235, A v2 = 1,152, а общий коэффициент усиления A v =A v1 ·A v2 = 2,575. Вы можете найти эти значения, используя режим курсора при низких частотах. Нажимайте Ctrl и →, чтобы выбрать нужный график. Сравните полученные вами графики с представленными на рис. 5.28.

Рис. 5.28. АЧХ фильтра Баттерворта четвертого порядка


Получите распечатку результатов анализа, включая все три графика для дальнейшего изучения. Обратите внимание на интересный пик на графике A v1 . Он компенсируется провалом на графике А v2 , поэтому график полного коэффициента усиления становится плоским почти на всей полосе пропускания, круто падая при частоте, близкой к 1 кГц.

Крутизну легче определить из графика в децибелах. Используйте характеристику 20·lg(V(9)/V(1)) и так далее, заменив три графика логарифмическими характеристиками. Убедитесь, что для полной схемы, f c =1 кГц. Также пронаблюдайте скорость спада для каждого из трех графиков. Вы сможете показать, что для каждого из двух каскадов, крутизна спада составляет приблизительно 10 дБ/дек по сравнению с приблизительно с 20 дБ/дек для общей характеристики. Разве не вызывает восхищения простота восприятия основных идей при передаче их графическим способом. Вы должны также оценить, сколько времени и усилий сэкономлено при использовании такого мощного вычислительного инструмента, как PSpice. Сравните кривые представленные на рис. 5.29, с полученными графиками.

Рис. 5.29. Логарифмические АЧХ (ЛАЧХ) фильтра Баттерворта четвертого порядка


Мы можем показать одно дополнительное свойство фильтра Баттерворта, слегка модифицировав предыдущий входной файл. Сравните фильтры второго и четвертого порядков. Будут необходимы некоторые вычисления, поскольку мы не имеем данных для двухкаскадного фильтра при f =1 кГц.

Низкочастотный коэффициент усиления будет таким же, как вычисленный ранее для фильтра второго порядка, а именно: A v =1,586. Положив R 1 =10 кОм, получим R 2 =5,86 кОм.

При R =1 кОм найдем, что С= 0,159 мкФ. Дополнение к схеме на рис. 5.27, позволяющее включить в схему фильтр второго порядка, показано на рис. 5.30. Отметим, что это дополнение имеет номера узлов большие, чем приведенные на рис. 5.27. Этот фильтр имеет собственный вход и физически не связан с четырехкаскадным фильтром. Если дополнить входной файл соответствующей информацией, он примет вид:

Fourth-Order Butterworth Filter Compared with Second-Order

Рис. 5.30. Дополнение к схеме на рис. 5.27, позволяющее включить в схему фильтр второго порядка


Выполните анализ и получите графики в децибелах V(9)/V(1) для фильтра четвертого порядка и V(14)/V(10) для фильтра второго порядка. Вы должны получить A v = 4,006 дБ (второй порядок) и A v =8,214 дБ (четвертый порядок). Мы хотим показать их при сравнимой базе, поэтому построим графики

20·lg(V(14)/V(10)),

20·lg(V(9)/V(1)) – 4,208.

Значение 4,208 представляет смещение второго графика относительно первого, нормализующего второй график относительно первого. Эти графики (рис. 5.31) с накладывающимися в низкочастотном диапазоне траекториями ясно показывают, что оба фильтра Баттерворта имеют одинаковую частоту f c =1 кГц. Это относится к фильтрам Баттерворта всех порядков.

Рис. 5.31. Логарифмических АЧХ для фильтров Баттерворта второго и четвертого порядков

Активный резонансный полосовой фильтр

В простой резонансной схеме резонансные свойства RLC -цепи используются для создания крутого спада характеристики на границах полосы пропускания. На рис. 5.32 показан входной колебательный контур, содержащий V s , R, L и C . Выберем параметры элементов, обеспечивающие необходимую ширину полосы частот В и добротность Q .

Рис. 5.32. Активный резонансный полосовой фильтр с добротностью Q = 2


Центральная частота принимается равной частоте резонанса LС-контура:

Добротность Q определяется по формуле Q =ω 0 L/R. В таком фильтре В =f 0 /Q=R /2πL. Например, выберем добротность Q=2, f 0 =11 кГц и R= 10 кОм. При этом L =0,289 Гн и С =0,724 нФ. В завершение выберем R 1 =10 кОм, чтобы обеспечить необходимое значение A v этого неинвертирующего усилителя. Входной файл:

Active Resonant Band-Pass Filter

Проведите анализ и получите график отношения выходного напряжения к входному (V(5)/V(1)) в логарифмическом масштабе. Проверьте центральную частоту и ширину полосы частот. Значения частот спада на 3 дБ составляют f =8,6 кГц и f =14,1 кГц, что обеспечивает полосу пропускания В =5,5 кГц. При этом центральная частота оказывается равной приблизительно 11,2 кГц.

Получим также график VP(5), чтобы наблюдать, как фазовый угол изменяется вблизи резонансной частоты. Он равен нулю при f =11 кГц. Интересно сравнить две схемы этого типа, которые имеют различные значения добротности. Мы получили результаты при добротности Q =2, а теперь исследуем другую схему при Q =5. На рис. 5.33 показана соответствующая схема. Ширина полосы частот В= 2,2 кГц, и сохраняя значение R =10 кОм, получим L =0,723 Гн и С= 0,289 нФ.

Рис. 5.33. Схема дополнения, позволяющая исследовать полосовой фильтр с добротностью Q = 5


Узлы пронумерованы таким образом, чтобы схемой можно было дополнить первоначальный входной файл. Это позволит нам получить АЧХ для обеих схем на одном графике. Добавьте следующие команды к предыдущему входному файлу:

Выполните анализ и получите в одном окне графики

20·lg(V(5)/V(1)),

20·lg(V(10)/V(6)).

Посмотрите влияние добротности на форму графиков при Q= 5 и Q= 2. С помощью курсора проверьте ширину полосы частот при Q =5. Она должна быть почти точно В =2,2 кГц. Эти кривые показаны на рис. 5.34.

Рис. 5.34. Графики Боде для сравнения АЧХ при добротностях Q = 2 и Q = 5


Получите другой график, используя VP(5) для одной кривой и VP(10) для другой. Это покажет сравнение сдвигов фазы для двух случаев. Сравните результат с полученным на рис. 5.35.

Рис. 5.35. Графики Боде для сравнения фазочастотных характеристик при добротностях Q = 2 и Q = 5

Активный RC полосовой фильтр

Использование катушки индуктивности в полосовом фильтре не всегда желательно, тем более что в некоторых случаях значение индуктивности очень велико. На рис. 5.36 представлена схема, в которой для обеспечения заданной полосы пропускания используются только конденсаторы и резисторы.

Рис. 5.36. Активный полосовой RC-фильтр


Для определения параметров элементов можно использовать следующие формулы:

Для примера мы выберем A 0 =50, f 0 =160 Гц и В= 16 Гц. Для удобства примем С 1 =С 2 =0,1 мкФ. Выражение для добротности Q=f 0 /B. Теперь найдите R 1 , R 2 и R 3 . Сравните ваши ответы с приведенными в последующих результатах анализа на PSpice. Обратите внимание, что значения сопротивления были немного округлены. Входной файл:

Проведите анализ и получите график V(4)/V(1), показывающий А 0 =50 при f 0 =158 Гц. Удалите этот график и постройте новый в логарифмическом масштабе, чтобы найти полосу пропускания. Убедитесь, что f 1 =151 Гц и f 2 =167 Гц, что дает B =16 Гц. На рис. 5.37 показан результат с курсором в одной из точек, соответствующих снижению на 3 дБ.

Рис. 5.37. Характеристика Боде для схемы на рис. 5.36

Обзор новых команд PSpice, применяемых в данной главе

Х []*

Например, запись

указывает, что подсхема подключена в узлах 9, 8 и 10 к основной схеме. Имя подсхемы - iop. Входной файл содержит описание подсхемы. Он мог бы иметь, например, такой вид:

где запись iop идентифицирует подсхему, в которой узлы подсхемы 1, 2 и 3 подключаются к внешним узлам 8, 9 и 10 соответственно команде X . Строка .ends показывает конец описания подсхемы.

Использование подсхем наиболее удобно, когда во входном файле необходимо использовать устройство, модель или группу элементов более одного раза. Например, все команды X1, Х2 и Х3 могли бы обращаться к одному и тому же устройству: iop.

Задачи

5.1. Идеальный инвертирующий ОУ, показанный на рис. 5.2, имеет следующие параметры элементов: R 1 =2 кОм; R 2 =15 кОм; А =100000 и R i =1 Мом. Проведите PSpice анализ, чтобы определить коэффициент усиления по напряжению, входное и выходное сопротивления. Значение 1 МОм для встречается на практике. Какие различия в результатах вы получите, если выполнить анализ на PSpice для R i =1 ГОм?

5.2. Рассчитайте идеальный неинвертирующий ОУ, показанный на рис. 5.3, таким образом, чтобы иметь коэффициент усиления по напряжению, равный 20. Выберите значения для R 1 и R 2 , и выполните PSpice анализ, чтобы проверить ваш расчет.

5.3. Идеальный ОУ, показанный на рис. 5.5, должен использоваться при значениях входных сигналов v a =3 В и v b =10 В. При R 1 =5 кОм, R 2 =10 кОм, R 3 =10 кОм и R 4 =5 кОм, найдите выходное напряжение, используя PSpice. Сравните результаты с теми, что получили в примере из текста при R 1 =R 3 и R 2 =R 4 . Определите роль R 3 и в определении коэффициента усиления по напряжению.

5.4. Для модели ОУ, приведенной на рис. 5.8, f t =1 МГц и f c =10 Гц. Пересмотрите модель, чтобы учесть f t =2 МГц и f c =10 Гц. Используйте R 1 =10 кОм и R 2 = 240 кОм. Найдите коэффициент усиления на средних частотах и верхнее значение частоты для снижения на 3 дБ. Сравните ваши результаты с приведенными в текстовом примере.

5.5. На рис. 5.15 произведение RC составляет 1 с. Покажите, что использование чаще применяемых на практике значений С =50 мкФ и R= 20 кОм в том же входном файле должно привести к тем же результатам, что и в текстовом примере. Затем при использовании С =50 мкФ и R= 10 кОм выполните анализ снова. Объясните различие между этим и предыдущим результатами.

5.6. Используя схему на рис. 5.17 при С =50 мкФ и R =20 кОм, выполните на PSpice анализ с тем же входным сигналом, что и на рисунке. Сравните полученные результаты с рис. 5.18. Затем при использовании С= 50 мкФ и R =10 кОм выполните анализ снова. Объясните различие между этим и предыдущим результатами.

5.7. На рис. 5.38 показан ОУ первого порядка, у которого

v s = 4 – 4u(t) В,

где u(t) представляет собой единичную ступенчатую функцию. Анализ показывает, что

v c (t ) = 10e -4t В и

v 0 (t) = -v c (t ) В.

Рис. 5.38.


Для t ≥0 выполните PSpice анализ, чтобы проверить предсказанные результаты.

5.8. На рис. 5.39 приведена схема с ОУ, для которой

v s (t ) = 3 - 3u (t ) В.

Рис. 5.39


Найдите v 0 (0), i с (0), i 0 (0) и получите график v 0 (t), используя PSpice.

5.9. Рассчитайте фильтр низкой частоты первого порядка, показанный на рис. 5.40, с частотой среза f 0 =5 кГц. Используйте R=R 1 =1 кОм и рассчитайте С . Найдите коэффициент усиления на средних частотах и используйте программу Probe для проверки расчета.

ОУ характеризуются усилительными, входными, выходными, энергетическими, дрейфовыми, частотными и скоростными характеристиками.

Усилительные характеристики

Коэффициент усиления (K U) равен отношению приращения выходного напряжения к вызвавшему это приращение дифференциальному входному напряжению при отсутствии обратной связи (ОС). Он изменяется в пределах от 10 3 до 10 6 .

Важнейшими характеристиками ОУ являются амплитудные (передаточные) характеристики (рис. 8.4). Их представляют в виде двух кривых, относящихся соответственно к инвертирующему и неинвертирующему входам. Характеристики снимают при подаче сигнала на один из входов при нулевом сигнале на другом. Каждая из кривых состоит из горизонтального и наклонного участков.

Горизонтальные участки кривых соответствуют режиму полностью открытого (насыщенного), либо закрытого транзисторов выходного каскада. При изменении входного напряжения на этих участках выходное напряжение усилителя остается постоянным и определяется напряжениями +U вых max) -U вых max . Эти напряжения близки к напряжению источников питания.

Наклонному (линейному) участку кривых соответствует пропорциональная зависимость выходного напряжения от входного. Этот диапазон называется областью усиления. Угол наклона участка определяется коэффициентом усиления ОУ:

K U = U вых / U вх.

Большие значения коэффициента усиления ОУ позволяют при охвате таких усилителей глубокой отрицательной обратной связью получать схемы со свойствами, которые зависят только от параметров цепи отрицательной обратной связи.

Амплитудные характеристики (см. рис. 8.4), проходят через нуль. Состояние, когда U вых = 0 при U вх = 0,называется балансом ОУ. Однако для реальных ОУ условие баланса обычно не выполняется. При U вх = 0 выходное напряжение ОУ может быть больше или меньше нуля:

U вых = + U вых или U вых = — U вых).

Дрейфовые характеристики

Напряжение (U смо), при котором U вых = 0, называется входным напряжением смещения нуля (рис. 8.5). Оно определяется значением напряжения, которое необходимо подавать на вход ОУ для получения нуля на выходе ОУ. Обычно составляет не более единиц милливольт. Напряжения U смо и ∆U вых (∆U вых = U сдв — напряжение сдвига) связаны соотношением:

U смо = ∆U вых / К U .

Основной причиной появления напряжения смещения является существенный разброс параметров элементов дифференциального усилительного каскада.

Зависимость параметров ОУ от температуры вызывает температурный дрейф входного напряжения смещения. Дрейф входного напряжения смещения – это отношение изменения входного напряжения смещения к изменению окружающей температуры:

E смо = U смо / Т.

Обычно E смо составляет 1…5 мкВ / °С.

Передаточная характеристика ОУ для синфазного сигнала показана на (рис. 8.6). Из него видно, что при достаточно больших значениях U сф (соизмеримых с напряжением источника питания) коэффициент усиления синфазного сигнала (К сф) резко возрастает.

Используемый диапазон входного напряжения называется областью ослабления синфазного сигнала. Операционные усилители характеризуется коэффициентом ослабления синфазного сигнала (К осс)отношением коэффициента усиления дифференциального сигнала (К u д) к коэффициенту усиления синфазного сигнала (К u сф).

К осс = К u д / К u сф.

Коэффициент усиления синфазного сигнала определяется как отношение изменения выходного напряжения к вызвавшему его изменению синфазног
о входного сигнала). Коэффициент ослабления синфазного сигнала обычно выражается в децибелах.

Входные характеристики

Входное сопротивление, входные токи смещения, разность и дрейф входных токов смещения, а также максимальное входное дифференциальное напряжение характеризуют основные параметры входных цепей ОУ, которые зависят от схемы используемого дифференциального входного каскада.

Входной ток смещения (I см) – ток на входах усилителя. Входные токи смещения обусловлены базовыми токами входных биполярных транзисторов и токами утечки затворов для ОУ с полевыми транзисторами на входе. Другими словами, I см – это токи, потребляемые входами ОУ. Они обуславливается конечным значением входного сопротивления дифференциального каскада. Входной ток смещения (I см), приводимый в справочных данных на ОУ, определяется как средний ток смещения:

I см = (I см1 – I см2) / 2.

Входной ток сдвига – это разность токов смещения. Он появляется вследствие неточного согласования коэффициентов усиления по току входных транзисторов. Ток сдвига является переменной величиной, лежащей в диапазоне от нескольких единиц до нескольких сотен наноампер.

Вследствие наличия входного напряжения смещения и входных токов смещения схемы ОУ приходится дополнять элементами, предназначенными для начальной их балансировки. Балансировка осуществляется подачей на один из входов ОУ некоторого дополнительного напряжения и введения резисторов в его входные цепи.

Температурный дрейф входного тока коэффициент, равный отношению максимального изменения входного тока ОУ к вызвавшему его изменению окружающей температуры.

Температурный дрейф входных токов приводит к дополнительной погрешности. Температурные дрейфы важны для прецизионных усилителей, так как, в отличии от напряжения смещения и входных токов, их очень сложно скомпенсировать

Максимальным дифференциальным входным напряжением лимитируется напряжение, подаваемое между входами ОУ в схеме, для исключения повреждения транзисторов дифференциального каскада

Входное сопротивление зависит от типа входного сигнала. Различают:

· дифференциальное входное сопротивление (R вх диф) – (сопротивление между входами усилителя);

· синфазное входное сопротивление (R вх сф) – сопротивление между объединенными входными выводами и общей точкой.

Значения R вх диф лежат в интервале от нескольких десятков килоом до сотен мегаом. Входное синфазное сопротивление R вх сф на несколько порядков больше R вх диф.

Выходные характеристики

Выходными параметрами ОУ являются выходное сопротивление, а также максимальное выходное напряжение и ток.

Операционный усилитель должен обладать малым выходным сопротивлением (R вых) для обеспечения высоких значений напряжения на выходе при малых сопротивлениях нагрузки. Малое выходное сопротивление достигается применением на выходе ОУ эмиттерного повторителя. Реальное R вых составляет единицы и сотни ом.

Максимальное выходное напряжение (положительное или отрицательное) близко к напряжению питания. Максимальный выходной ток ограничивается допустимым коллекторным током выходного каскада ОУ.

Энергетические характеристики

Энергетические параметры ОУ оценивают максимальными потребляемыми токами от обоих источников питания и соответственно суммарной потребляемой мощностью .

Частотные характеристики

Усиление гармонических сигналов характеризуется частотными параметрами ОУ, а усиление импульсных сигналов – его скоростными или динамическими параметрами.

Частотная зависимость коэффициента усиления ОУ без обратной связи называется амплитудно-частотной характеристикой (АЧХ).

Частота (f 1), при которой коэффициент усиления ОУ равен единице, называется частотой единичного усиления .

Вследствие создаваемого усилителем в области высоких частот фазового сдвига выходного сигнала относительно входного фазо-частотная характеристика ОУ по инвертирующему входу приобретает дополнительный (сверх 180°) фазовый сдвиг (рис. 8.8).

Для обеспечения устойчивой работы ОУ необходимо уменьшать запаздывание по фазе, т.е. корректировать амплитудно-частотную характеристику ОУ.

Скоростные характеристики

Динамическими параметрами ОУ являются скорость нарастания выходного напряжения (скорость отклика) и время установления выходного напряжения . Они определяются по реакции ОУ на воздействие скачка напряжения на входе (рис. 8.9).

Скорость нарастания выходного напряжения – это отношение приращения ( U вых) к интервалу времени ( t), за который происходит это приращение при подаче на вход прямоугольного импульса. То есть

V U вых = U вых / t

Чем выше частота среза, тем больше скорость нарастания выходного напряжения. Типовые значенияV U вых единицы вольт на микросекунды.

Время установления выходного напряжения (t уст) – время, в течение которого U вых операционного усилителя изменяется от уровня 0,1 до уровня 0,9 установившегося значения U вых при воздействии на вход ОУ прямоугольных импульсов. Время установления обратно пропорционально частоте среза.