На Российском рынке энергетического оборудования достаточно широко представлены газотурбинные установки малой мощности, выпускаемые на базе авиационных двигателей такими предприятиями, как «Пермский моторостроительный завод», НПО «Сатурн», «Завод им. В.Я. Климова» и др. Топливом в таких установках является керосин, дизельное топливо, природный газ и попутный газ нефтяных месторождений.

Необходимое оборудование размещается в транспортабельных контейнерах, оборудованных всеми необходимыми системами для их нормальной эксплуатации.

На рис.5.4 представлена типовая модульная газотурбинная установка (газотурбинная ТЭЦ), предназначенная для производства электрической и тепловой энергии.

Модульное исполнение газотурбинных ТЭЦ повышает надежность источника электро - и теплоснабжения и сокращает сроки монтажа от нескольких дней до нескольких недель, в зависимости от комплектации и местных условий.

В табл. 5.1 приводится перечень отечественных и зарубежных предприятий и основные технические характеристики, выпускаемых ими газотурбинных установок для выработки электрической и тепловой энергии.

Особое место в ряду выпускаемых ГТУ зарубежными фирмами занимает микротурбинные установки (МТУ) компании Calnetix Power Solutions. В настоящее время компания выпускает установку мощностью 100 кВт модели ТА-100.

Микротурбинная установка изготовлена по блочно-модульному принципу, позволяющему заменять в случае необходимости отдельный узел, а не изделие в целом, и поставляется в полной заводской готовности. Общий вид микротурбинной установки представлен на рис.5.5.

Рис.5.4. Типовая модульная газотурбинная ТЭЦ


Рис.5.5. Общий вид микротурбинной установки ТА-100 RCHP:

1 - дожимной газовый компрессор; 2 - котел утилизатор; 3 - рекуператор; 4 - воздухозаборник турбогенератора; 5 - воздухозаборник системы охлаждения подкапотного пространства; 6 - шкаф силовой электроники; 7 - масляная система; 8 - турбогенератор; 9 - выход силовых кабелей; 10 - топливная система; 11 - подвод газа; 12 - слив теплоносителя из поддона; 13 - выход горячей воды; 14 - вход холодной воды

В состав установки входят: турбогенератор, камера сгорания, рекуператор, система утилизации тепла с котлом-утилизатором (КУ), маслосистема, топливная система, дожимной газовый компрессор, силовая электроника, цифровая система автоматического управления, воздушная система охлаждения подкапотного пространства и силовой электроники, аккумуляторные батареи.

Принцип работы установки следующий. Очищенный атмосферный воздух попадает в воздухозаборник 4, откуда он поступает на вход в компрессор. В компрессоре воздух сжимается и за счёт этого нагревается до температуры 250 °С. После компрессора воздух поступает в специальный газовоздушный теплообменник (рекуператор) 3, где он дополнительно подогревается до температуры 500 °С. Дополнительный подогрев позволяет примерно в 2 раза повысить электрическую эффективность установки. Далее нагретый сжатый воздух перед камерой сгорания смешивается с газообразным топливом высокого давления, и гомогенная газовоздушная смесь поступает в камеру сгорания для горения. Для повышения давления газа используется штатный дожимной компрессор.

Покидая камеру сгорания, нагретые до температуры 926 °С выхлопные газы поступают в турбину 8, где, расширяясь, совершают работу, вращая её, а также расположенные на этом же валу колесо компрессора и высокоскоростной синхронный генератор.

После расширения в турбине выхлопные газы с температурой 648 °С по газоходу попадают в рекуператор 3, где отдают своё тепло сжатому воздуху после компрессора. Температура выхлопных газов после рекуператора снижается до 310 °С.

На выходе из рекуператора стоит байпасная заслонка, которая направляет выхлопные газы либо по байпасному газоходу, либо напрямую в котёл-утилизатор 2. В котле-утилизаторе (газоводяном теплообменнике) выхлопные газы отдают своё тепло сетевой воде, которая нагревается там до требуемой температуры.

В отличие от других производителей, частота вращения ротора практически не зависит от нагрузки и поддерживается на уровне 68000 об/мин. Это позволяет без дополнительных аккумуляторных батарей в один приём принимать до 100 % нагрузки.

Турбогенератор

Турбогенератор является основной и наиболее наукоёмкой и трудоёмкой частью установки. Общий вид турбогенератора в разрезе показан на рис.5.6.

Таблица 5.1

Технические характеристики газотурбинных двигателей

Модель Мощность номинальная, МВт Расход газа на 100%-й нагрузке, кг/ч КПД, % Степень повышения давления Расход рабочего тела через двигатель, кг/с Частота вращения выходного вала генератора, об/мин Температура газов на выходе из двигателя, С° Давление топливного газа, МПа
Аэросила, НПП, ОАО
1А16-100 0,333 94,6
Зоря-Машпроект, НПКГ, ГП
UGT2500(ДО49) 2,85 28,5 16,5 14000/3000 2,5
Ивченко-Прогресс, ГП
ГТП АИ-2500 2,5 769,5 24,2 7,5 20,5 12350/1000 1,08
Д-336-1-4 4,2 26,5 27,5 8200/3000 2,35
Д-336-2-4 4,2 26,5 27,5 8200/3000 2,35
Калужский двигатель (КАДВИ), ОАО
9И56 0,11 3,3 1,45 38000/8000 0,55
9И56М 0,155 4,2 1,48 40000/8000 0,78
ОКА-1 0,155 4,7 1,70 41200/6000 0,85
ОКА-2 0,2 5,0 1,76 43400/6000 1,0
ОКА-3 0,265 5,7 1,93 46000/6000 1,1
Климов, ОАО
ТВ3-117 1,1 25,4 7,88 -/1500 1,2
Мотор Сич, ОАО
ТВ3-137 1,07 5,5 7,63 15000/1000 1,0-1,3
АИ-20 ДМН 2,5 7,48 20,8 12350/1000 1,08
АИ-20-ДМЭ 2,5 7,48 20,8 12350/1000 1,08
ГТЭ-МС-2.5Д 2,5 7,48 20,8 12350/1000 1,08
Пермский моторный завод (ПМЗ), ОАО (УК ПМК)
ГТУ-2.5П 2,7 21,9 5,9 25,6 5500/3000 1,0-1,2
ГТУ-4П 4,3 24,7 7,3 29,8 5500/3000 1,2-1,6
Пролетарский завод, ОАО
ГТГ-1500-2Г 1,5 6,1 11,2 12500/1500 1,2
Самарский научно-технический комплекс им. Н.Д. Кузнецова (СНКТ), ОАО
НК-127 13,6 13000/3000 3,0
Сатурн, НПО, ОАО
ДО49Р 2,85 28,5 2,1-2,5
Окончание таблицы 5.1
Capstone Turbine Corporation
C30 0,01 0,31 0,03-0,35
C65 0,065 16,4 0,49 0,52-0,56
C200 0,19 6,7 0,02-0,52
C200 0,2 6,7 0,52-0,56
Daihatsu Diesel Mfg. Co. Ltd.
DT-4 0,44 2,97 -/1500 1,2-1,6
DT-6 0,66 4,72 -/1500 1,2-1,6
DT-4W 0,88 41.5 5,94 -/1500 1,2-1,6
DT-10 1,1 8,23 -/1500 1,2-1,6
DT-10A 1,3 41,5 8,23 -/1500 1,2-1,6
DT-14 1,5 40,7 10,2 -/1500 1,2-1,6
DT-20 2,2 41,9 14,8 -/1500 1,2-1,6
DT-10W 2,25 40,7 16,47 -/1500 1,2-1,6
DT-10AW 2,6 41,5 16,47 -/1500 1,2-1,6
DT-14W 40,7 20,43 -/1500 1,2-1,6
DT-20W 4,4 41,9 29,79 -/1500 1,2-1,6
Distributed Energy Systems Corp.
MT-100 0,1 4,5 0,79 0,6-0,95
Mitsui Engineering & Shipbuilding Co. Ltd.
SB5 1,1 25,5 25600/3000 1,8-2,3
SB15 2,7 25,6 13070/3000 1,8-2,3
MSC4Q 3,5 27,9 9,7 18,6 -/1500 1,8-2,3
MSC5Q 4,3 29,3 10,3 19,1 -/1500 1,8-2,3
OPRA Tecnologies ASA
OP 16-2GL 27.8 6.7 8.8 26000/1500 1,6-2,0
PBS Velka Bites, a. s.
TE 100G 0,1 71,3 3,9 56000/52400 1,2-1,5
Pratt & Whitney Canada
ST5 0,457 139,6 23,5 7,3 2,4 30000/3000
ST6L-721 0,508 156,2 23,4 7,3 33000/3000
ST6L-795 0,678 197,7 24,7 7,3 3,3 33000/3000
ST6L-813 0,848 7,3 30000/3000
ST6L-90 1,18 7,3 5,3 30000/3000
ST18A (DLE) 1,96 30,2 13,7 8,4 20000/3000
ST18A (WLE) 2,02 28,3 13,7 9,2 20000/3000
ST30 3,3 16,6 14,4 14875/3000
ST40 16,6 15,1 14875/3000
Rolls –Royce Power Engeneering Plc (Power Generation)
501-KC5 4,1 15,5 13600/3000 1,6-2,0
501-KB5 4,8 9,4 15,4 14600/3000 1,8-2,2

Рис.5.6. Турбогенератор в разрезе:

1 - корпус; 2 - корпус статорной части; 3 - маслопровод (подвод масла); 4 - воздухопровод для поддува лабиринта; 5 - диффузор; 6 - сопловый аппарат; 7 - жаровая труба; 8 - свеча зажигания; 9 - топливный коллектор; 10 - колесо турбины; 11 - колесо компрессора; 12 - лабиринтное уплотнение; 13 - гидродина-

мический подшипник; 14 - статорные обмотки; 15,17 - горловина слива масла; 16 - постоянные магниты; 18 - ротор; 19 - керамический подшипник качения

Это высокооборотный одновальный агрегат с частотой вращения ротора 68000 об/мин. Конструктивно он выполнен в едином корпусе, в котором устанавливается ротор. К корпусу со стороны турбины пристыковывается камера сгорания, представляющая собой отдельный самостоятельный узел.

Ротор, изображенный на рис.5.7, является наиболее ответственной частью турбогенератора.

На одном валу, который изготовлен из высокопрочной стали, последовательно размещены:

Втулка (ротор) высокоскоростного синхронного генератора с двумя запрессованными постоянными магнитами;

Колесо одноступенчатого центробежного компрессора;

Колесо одноступенчатой центростремительной турбины.

Ротор турбогенератора устанавливается на двух опорах: первая опора перед передним торцом втулки генератора, а вторая - между втулкой генератора и колесом компрессора.

Первой опорой является упорный подшипник качения с керамическими шариками, второй – гидродинамический подшипник. Оба подшипника охлаждаются и смазываются высококачественным синтетическим маслом.

Рис.5.7. Общий вид ротора

Отличительной особенностью конструкции ротора является консольная схема размещения колёс компрессора и турбины. Такое конструкторское решение позволило вынести все подшипники из горячей зоны, что значительно уменьшило безвозвратные потери масла, уменьшило производительность насоса маслосистемы, позволило увеличить сроки замены масла и масляного фильтра.

Использование высокоскоростного синхронного генератора и полупроводникового преобразователя напряжения позволило избавиться от «ахиллесовой пяты» большинства газовых турбин малой мощности – редуктора.

Камера сгорания

Камера сгорания, изображенная на рис.5.8, обеспечивает преобразование химической энергии газообразного топлива в тепловую энергию рабочего тела.

Конструкция камеры противоточная, кольцевая, с многоточечной подачей газообразного топлива через отдельные инжекторы. Камера выполнена из расчета длительной работы как при частичных, так и полных нагрузках установки.

Камера сгорания состоит из следующих основных элементов: корпуса; топливного коллектора, топливных инжекторов, жаровой трубы, свечи зажигания, проставки.

Газообразное топливо подаётся через 12 инжекторов на вход в камеру под давлением 0,5-0,6 МПа.



Рис.5.8. Конструкция камеры сгорания:

1 - жаровая труба; 2 - инжекторы; 3 - топливный коллектор; 4 - корпус камеры сгорания; 5 - элементы для крепления жаровой трубы к корпусу; 6 - свеча зажигания; 7 - проставка

Рекуператор

Газовоздушный рекуператор предназначен для повышения электрического КПД установки за счёт дополнительного подогрева воздуха после компрессора. Нагрев воздуха происходит за счёт теплоты выхлопных газов турбины (рис.5.5).

Рекуператор представляет собой газовоздушный пластинчатый теплообменный аппарат, внешний вид которого представлен на рис.5.9. Экономия топлива в установке происходит за счёт увеличения температуры воздуха, который поступает в камеру сгорания из воздушного компрессора.

Система утилизации тепла с котлом-утилизатором

Система утилизации тепла предназначена для подогрева сетевой воды до заданного значения за счет использования теплоты выхлопных газов.

Регулирование параметров воды на выходе из котла-утилизатора осуществляется за счёт перепуска выхлопных газов через байпасную магистраль.

Рис.5.9. Общий вид рекуператора

В состав системы входят: котел-утилизатор с байпасной заслонкой, байпасная магистраль, расходомер для измерения потока теплоносителя, приборы для измерения температуры теплоносителя на входе и на выходе из котла-утилизатора, приборы для измерения температуры выхлопных газов на входе и на выходе из котла-утилизатора, реле максимального давления на выходе из котла-утилизатора.

Система воздушного охлаждения

Система воздушного охлаждения предназначена для надёжного отвода тепла от тепловыделяющих элементов (турбогенератора, рекуператора, силовой электроники, котла-утилизатора, маслорадиа-

тора дожимного компрессора, маслорадиатора маслосистемы), находящихся внутри микротурбинной установки.

Внутри установки находятся вентиляторы, которые обеспечивают принудительное движение воздуха. Места забора и выброса воздуха показаны на рис.5.10.

Воздух, направляемый для охлаждения узлов и агрегатов, находящихся в подкапотном пространстве, разделяется на две части. Первая часть идёт на охлаждение маслорадиатора, турбогенератора, рекуператора и котла-утилизатора. Движение воздуха обеспечивает вентилятор маслорадиатора. Вторая часть идёт на охлаждение силовой электроники и радиатора дожимного компрессора. Движение воздуха обеспечивает вентилятор, расположенный в нижней части микротурбинной установки.

Выход воздуха из установки происходит в задней части установки через два прямоугольных отверстия.


Рис.5.10. Места забора и отвода воздуха из подкапотного пространства:

1 - воздух для охлаждения подкапотного пространства; 2 - воздух в газотурбинный генератор; 3 - выход выхлопных газов; 4 - воздух для охлаждения силовой электроники; 5 - выход охлаждающего воздуха (верхнее отверстие); 6 - выход охлаждающего воздуха (нижнее отверстие)

Технические характеристики микротурбинной установки TA-100 RCHP (по данным завода изготовителя) приведены в табл. 5.2.

Таблица 5.2

Технические характеристики установки TA-100 RCHP

История газотурбинных двигателей уходит корнями в начало ХХ века. В 1903 году норвежский изобретатель Агидус Эллинг первым создал работающий двигатель с газовой турбиной мощностью 11 л.с. (двигатель самолета братьев Райт, который поднялся в воздух в том же году, имел мощность 12 л.с.). Спустя несколько лет Чарльз Кёртис, изобретатель паровой турбины, подал патентную заявку, в которой описал конструкцию газовой турбины, и в 1914-м получил патент. В 1918 году фирма General Electric (GE), основанная Томасом Эдисоном в середине 1870-х, начала работы над турбонагнетателями для авиационных двигателей, а спустя два десятилетия реактивными авиадвигателями стало заниматься газотурбинное подразделение фирмы (которое сейчас считается одним из крупнейших в мире в своей области).

В 1930 году изобретатель и офицер Королевских ВВС Великобритании Фрэнк Уиттл разработал и запатентовал первый газотурбинный двигатель для использования в качестве реактивного движителя. Пока Уиттл занимался решением технических проблем, связанных с конструкцией двигателя, немец Ганс фон Охайн сумел первым создать и испытать в 1939 году самолет с реактивным двигателем.

От авиации до энергетики

Во второй половине XX века газотурбинные двигатели стали основой современной авиации. Конечно, двигатели совершенствовались и увеличивались в размерах. Сегодня рекорд принадлежит двигателям серии GE90, которые устанавливают на Boeing 777. Диаметр вентиляторов этого двигателя 3,4 м, в нем установлен компрессор с 22 лопатками, а его тяга составляет 52 000 кг (и более 57 600 кг при испытаниях), что в 10 000 раз больше, чем мощность двигателя братьев Райт, которым они пользовались 100 лет назад.

Современные газотурбинные двигатели (ГТД) служат не только в авиации, но и в энергетике, где их используют для производства электроэнергии. Горячие газы, полученные в результате сжигания природного газа в камере сгорания, проходят через турбину, вращают ее и приводят в движение вал генератора. ГТД широко используются на электростанциях во время пиковых нагрузок. По размерам и мощности такие ГТД значительно превосходят своих авиационных братьев. Например, передовой ГТД Siemens SGT5−8000H удерживает мировой рекорд — масса этого гиганта 440 т, он может выдавать 340 МВт в простом цикле и почти в два раза больше в комбинированном. КПД этого двигателя составляет почти 40%, а в комбинированном цикле — около 60%. Помимо самолетов и электростанций ГТД применяются и в танках, кораблях, тепловозах, локомотивах, а также используются в качестве вспомогательных генераторов.


Что такое MEMS. Эта аббревиатура означает Micro-Electro- Mechanical Systems — микроэлектромеханические системы. MEMS — это сочетание механических элементов, датчиков, приводов, собранных на кремниевой подложке, с электронными схемами. И механика и электроника изготавливаются с помощью стандартных технологий микроэлектронной промышленности. Такой подход дает возможность получать уникальные устройства, сочетающие вычислительные возможности электроники с чувствительностью механических сенсоров, в микроскопических размерах — это готовое изделие на одном чипе. Технологии микроэлектронной промышленности позволяют выпускать подобные устройства большими сериями, что весьма положительно сказывается на надежности и цене. MEMS широко применяются в быту — в частности, именно к этому классу относятся акселерометры (датчики ускорений), крупнейшим потребителем которых является современная автомобильная промышленность: именно эти датчики подают сигналы для раскрытия подушек безопасности при столкновениях. Матрицы DLP-проекторов, твердотельные гироскопы и пьезоголовки принтеров — типичные представители MEMS.

От большого к малому

Новые технологии позволяют создавать двигатели не только гигантских, но и маленьких (и даже очень маленьких) размеров. Японская фирма IHI Aerospace производит переносной газотурбинный генератор Dynajet 2.6 мощностью 2,6 кВт и массой 67 кг. Впрочем, это далеко не предел — двигатель, созданный Швейцарским федеральным технологическим институтом (ETH Zurich), имеет размер всего несколько сантиметров и может генерировать почти 100 Вт электроэнергии на протяжении нескольких дней. Но дальше всех в направлении миниатюризации зашли исследователи Массачусетского технологического института (MIT), которые разработали газотурбинный двигатель размером всего около 1 мм.

Несмотря на столь внушительную разницу в размерах между таким гигантом, как GE90, и миллиметровым двигателем MIT, при ближайшем рассмотрении оказывается, что у них есть очень много общего. По конструкции они похожи: компрессор, камера сгорания и турбина, которая приводится в движение струей продуктов сгорания. Топливо впрыскивается в поток на выходе из компрессора, смешивается с воздухом, сгорает и вращает турбину, которая приводит в движение компрессор и генератор. Однако, разумеется, создание столь малого газотурбинного двигателя ставит перед конструкторами множество задач, с которыми не приходится сталкиваться создателям традиционных ГТД.


Микротурбинщики

В середине 1990-х в Массачусетском технологическом институте группа исследователей начала работать над проектом по микро-ГТД. «Я задумался над вопросом: если большой ГТД может обеспечивать электричеством целый город, почему нельзя сделать очень маленький двигатель, который бы обеспечил электрические потребности одного человека? — вспоминает Алан Эпштейн, профессор MIT и руководитель исследовательской группы. — А цена устройств MEMS (микроэлектромеханических систем) сейчас не слишком высока, так что себестоимость энергии такой персональной электростанции может быть сравнима с аналогичным параметром большого ГТД ($0,3−0,5 за 1 Вт)».


Разработанный в Швейцарском федеральном технологическом институте (ETH) миниатюрный газотурбинный двигатель построен по классической схеме с центробежным компрессором и осевой турбиной (схема далее).

Микро-ГТД состоит из тех же принципиальных элементов, что и его «большие братья», но сами размеры требуют принципиально других подходов и технологий. По словам Эпштейна, многие вопросы имеют такой же принципиальный характер — компоновка, механические нагрузки, вопросы коррозии. Однако в некоторых отношениях разработка микро-ГТД проще — например, микроскопические валы очень жесткие на изгиб, что помогает избавиться от традиционной проблемы изгиба вала у больших двигателей. Тепловые перепады при таких размерах не представляют большой угрозы, отпадает также необходимость ухода и ремонта (микро-ГТД неремонтопригоден, его просто заменяют новым). А в некоторых — сложнее: «Две наши самые большие проблемы — это влияние точности изготовления на эксплуатационные качества пары ‘вал-подшипник", а также поиск компромисса между требованиями к конструкции (термодинамика, сгорание, нагрузки, гидродинамика и электромеханика) и особенностями технологии изготовления двигателя. Это и по сей день остается нашим важнейшим вопросом».


Двигатель имеет диаметр всего несколько сантиметров и способен генерировать до 100 Вт мощности на валу. Такой полностью автономный источник электроэнергии будет весьма полезен, а в некоторых случаях совершенно незаменим.

«Хотя детали все те же самые, технология изготовления микро-ГТД, естественно, совершенно иная, она основана на технологиях полупроводниковой промышленности. С помощью фотолитографии можно создавать детали и узлы размерами от 1 до 10 000 микрон с высокой точностью, причем серийно, — объясняет профессор Эпштейн. — Детали вытравливаются из кремниевых монокристаллических пластин толщиной 0,5−1 мм и диаметром 100−300 мм, потом их склеивают вместе и получают пакет с несколькими готовыми двигателями. При необходимости пакет разрезают на кусочки и получают отдельные двигатели. Сами двигатели могут быть различного размера — сверху нас ограничивает не литография, а скорее глубина и точность травления. Для малых размеров, меньше 1 мм, основным ограничением является вязкость воздуха, которая резко отрицательно влияет на характеристики двигателя». В один пакет могут войти десятки или даже сотни микродвигателей. В идеале создание всех устройств из пакета происходит параллельно, что приводит к самому главному преимуществу такой технологии — низкой себестоимости готового изделия. «Подобные двигатели в будущем можно будет изготавливать точно таким же образом, как электронные чипы и автомобильные датчики», — говорит Эпштейн.


Газотурбинный двигатель, разработанный в MIT, состоит из центробежного компрессора и радиальной турбины с роторами диаметром 8 и 6 мм соответственно. На диаграмме ниже показана схема одного из первых прототипов двигателя. Сжатый компрессором воздух проходит по каналам, проложенным на внешней поверхности камеры сгорания, охлаждая ее и забирая тепло, что увеличивает эффективность и уменьшает температуру внешних стенок ГТД. Роторы поддерживаются радиальными пневмоподшипниками и гидростатическими упорными подшипниками осевого вала. Последние, вместе с уравновешивающим поршнем, принимают на себе осевые нагрузки. Запуск двигателя производится с помощью сжатого воздуха от внешнего источника. Согласно расчетам, скорость вращения компрессора составляет около 1,2 млн об/мин. (это не опечатка — именно миллионов!), линейная скорость внешней кромки ротора может достигать 500 м/с. Лопатки компрессора и турбины имеют размер 400 мкм в высоту. ГТД прокачивает 0,35 г воздуха каждую секунду, генерируя тягу в 11 гс и 17 Вт мощности на валу. Генератор не показан, в дальнейшем он может бытиь интегрирован в конструкцию.

Микроэнергия для будущего

Для чего же нужны подобные двигатели? Сейчас проект микродвигателей в MIT финансируется американским военным ведомством, которое видит в этих новых технологиях большой потенциал. Маленькие двигатели, заряжаемые специальными картриджами с водородом, можно использовать как в небольших беспилотных летательных аппаратах (БПЛА), так и в обычных электронных приборах. Именно питание мобильной военной электроники, скорее всего, станет испытанием сил для первых серийных микро-ГТД, которые появятся на рынке, как надеются разработчики, уже совсем скоро — через несколько лет.


Микро-ГТД можно использовать и для гражданских целей — вместо аккумуляторов в мобильных телефонах, ноутбуках, цифровых фотоаппаратах, а также в качестве дешевых микродвигателей для сельского хозяйства, различных датчиков и даже детских игрушек. «Для современных литий-ионных аккумуляторов удельная мощность запасенной энергии составляет порядка 120−150 Вт ч/кг. Это, конечно, не предел, новые серно-литиевые батареи имеют показатели в два раза выше — порядка 300−350 Вт ч/кг. Но микро-ГТД в скором будущем все равно будут вне конкуренции — мы ожидаем получить цифры порядка 500−700 Вт ч/кг. А в отдаленном будущем — 1200−1500 Вт ч/кг с учетом массы самого двигателя и запаса топлива», — оптимистично заявляет Алан Эпштейн.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Предназначение и принцип работы паротурбинных и газотурбинных двигателей. Опыт эксплуатации судов с ГТУ. Внедрение ГТД в различные отрасли промышленности и транспорта. Производство турбореактивного двигателя с форсажной камерой, схема его подключения.

    презентация , добавлен 19.03.2015

    Характеристика метрологической службы ООО "Белозерный ГПК", основные принципы ее организации. Метрологическое обеспечение испытаний газотурбинных двигателей, их цели и задачи, средства измерения. Методика проведения измерений ряда параметров работы ГТД.

    дипломная работа , добавлен 29.04.2011

    Проблемы, возникающие при эксплуатации систем автоматического управления двигателями типа FADEC. Характеристика газотурбинных двигателей. Гидропневматические системы управления топливом. Управление мощностью и программирование подачи топлива (CFM56-7B).

    дипломная работа , добавлен 08.04.2013

    Обоснование схемы технологического процесса капитального ремонта двигателя ЗИЛ-130. Выбор режима работы и расчет годовых фондов времени работы рабочих и оборудования. Компоновка производственного корпуса. Технико-экономические показатели предприятия.

    курсовая работа , добавлен 06.02.2013

    Способы расчета котельного агрегата малой мощности ДЕ-4 (двухбарабанного котла с естественной циркуляцией). Расчет объемов и энтальпий продуктов сгорания и воздуха. Определение КПД котла и расхода топлива. Поверочный расчёт топки и котельных пучков.

    курсовая работа , добавлен 07.02.2011

    Общая характеристика асинхронных микродвигателей с короткозамкнутым ротором, анализ преимуществ: низкая стоимость производства, малая шумность, надежность в эксплуатации. Рассмотрение тапы расчета размеров зубцовой зоны статора и воздушного зазора.

    контрольная работа , добавлен 19.05.2014

    Основные виды, устройство и принцип работы шаговых двигателей. Управление шаговым двигателем с помощью автономного контроллера. Управление контроллером с помощью системы программирования PureBasic. Модель крана как пример применения шаговых двигателей.

    дипломная работа , добавлен 06.03.2013

Из полученного е-mail (копия оригинала):

«Уважаемый Виталий!Ни магли бы Вы нимного больше рассказать

о модельных ТРД, что это ваабще такое и с чем их едят?»

Начнём с гастрономии, турбины ни с чем не едят, ими восхищаются! Или, перефразируя Гоголя на современный лад: «Ну какой же авиамоделист не мечтает построить реактивный истребитель?!».

Мечтают многие, но не решаются. Много нового, еще больше непонятного, много вопросов. Часто читаешь в различных форумах, как представители солидных ЛИИ и НИИ с умным видом нагоняют страха и пытаются доказать, как это всё сложно! Сложно? Да, может быть, но не невозможно! И доказательство тому - сотни самодельных и тысячи промышленных образцов микротурбин для моделизма! Надо только подойти к этому вопросу философски: всё гениальное - просто. Поэтому и написана эта статья, в надежде поубавить страхов, приподнять вуаль неизвестности и придать вам больше оптимизма!

Что такое турбореактивный двигатель?

Турбореактивный двигатель (ТРД) или газотурбинный привод основан на работе расширения газа. В середине тридцатых годов одному умному английскому инженеру пришла в голову идея создания авиационного двигателя без пропеллера. По тем временам - просто признак сумасшествия, но по этому принципу работают все современные ТРД до сих пор.

На одном конце вращающегося вала расположен компрессор, который нагнетает и сжимает воздух. Высвобождаясь из статора компрессора, воздух расширяется, а затем, попадая в камеру сгорания, разогревается там сгорающим топливом и расширяется ещё сильней. Так как деваться этому воздуху больше некуда, он с огромной скоростью стремится покинуть замкнутое пространство, протискиваясь при этом сквозь крыльчатку турбины, находящейся на другом конце вала и приводя её во вращение. Так как энергии этой разогретой воздушной струи намного больше, чем требуется компрессору для его работы, то ее остаток высвобождается в сопле двигателя в виде мощного импульса, направленного назад. И чем больше воздуха разогревается в камере сгорания, тем он быстрее стремится её покинуть, ещё сильнее разгоняя турбину, а значит и находящийся на другом конце вала компрессор.

На этом же принципе основаны все турбонагнетатели воздуха для бензиновых и дизельных моторов, как двух, так и четырёхтактных. Выхлопными газами разгоняется крыльчатка турбины, вращая вал, на другом конце которого расположена крыльчатка компрессора, снабжающего двигатель свежим воздухом.

Принцип работы - проще не придумаешь. Но если бы всё было так просто!

Показатели Размерность Величина
Электрическая мощность кВт
Тепловая мощность (ГВС/отопление) (49/60) (70/95) кВт 172 / 160
КПД электрический %
КПД полный % > 75 (%)
Величина тока при нагрузке 100 % А
Максимальное значение тока (перегрузка) в течение 5 секунд А
Расход газа в режиме номинальной мощности нм 3 /ч 39/34
Длина (в помещении /нар. исп) мм 3111,5 / 3316,5
Ширина (в помещении /нар. исп) мм 917 / 917
Окончание табл. 5.2
Высота (в помещении /нар. исп) мм 2123 / 2250
Масса (в помещении /нар. исп) кг 1814 / 2040
Тип электрического генератора высокооборотный, с двумя постоянными магнитами
Частота вращения ротора об/мин
Расход воздухагазотурбинного агрегата кг/с
Максимальное аэродинамическое сопротивле- ние выхлопного тракта Па
Расход воздуха на охлаждение силовой электроники нм 3 /с 0,38
Расход воздуха на охлаждение масляной системы, котла-утилизатора и дожимного компрессора нм 3 /с 0,755
Максимальное аэродинамическое сопротив- ление присоединяемого газохода выхлопных газов Па
Максимальное аэродинамическое сопротив- ление присоединяемого воздуховода для отвода охлаждающего воздуха от масляно-воздушного радиатора и котла-утилизатора Па
Максимальное аэродинамическое сопротив- ление присоединяемого воздуховода для отвода охлаждающего воздуха от силовой электроники и дожимного компрессора Па
Избыточное давление газа на входе в дожимной компрессор кПа от 0,5 до 35
Объём масляного бака л
Температура выхлопных газов на входе в котел-утилизатор °С
Температура выхлопных газов на выходе из котла-утилизатора °С
Температура воды на входе в котел-утилизатор °С
Температура воды на выходе из котла-утилизатора °С

ТРД можно четко разделить на три части.

  • А. Ступень компрессора
  • Б. Камера сгорания
  • В. Ступень турбины

Мощность турбины во многом зависит от надёжности и работоспособности её компрессора. В принципе бывают три вида компрессоров:

  • А. Аксиальный или линейный
  • Б. Радиальный или центробежный
  • В. Диагональный

А. Многоступенчатые линейные компрессоры получили большое распространение только в современных авиационных и промышленных турбинах. Дело в том, что достичь приемлемых результатов линейным компрессором можно, только если поставить последовательно несколько ступеней сжатия одну за другой, а это сильно усложняет конструкцию. К тому же, должен быть выполнен ряд требований по устройству диффузора и стенок воздушного канала, чтобы избежать срыва потока и помпажа. Были попытки создания модельных турбин на этом принципе, но из-за сложности изготовления, всё так и осталось на стадии опытов и проб.

Б. Радиальные, или центробежные компрессоры . В них воздух разгоняется крыльчаткой и под действием центробежных сил компримируется - сжимается в спрямительной системе-статоре. Именно с них начиналось развитие первых действующих ТРД.

Простота конструкции, меньшая подверженность к срывам воздушного потока и сравнительно большая отдача всего одной ступени были преимуществами, которые раньше толкали инженеров начинать свои разработки именно с этим типом компрессоров. В настоящее время это основной тип компрессора в микротурбинах, но об этом позже.

В. Диагональный , или смешанный тип компрессора, обычно одноступенчатый, по принципу работы похож на радиальный, но встречается довольно редко, обычно в устройствах турбонаддувов поршневых ДВС.

Развитие ТРД в авиамоделизме

Среди авиамоделистов идёт много споров, какая же турбина в авиамоделизме была первой. Для меня первая авиамодельная турбина, это американская TJD-76. В первый раз я увидел этот аппарат в 1973 году, когда два полупьяных мичмана пытались подключить газовый баллон к круглой штуковине, примерно 150 мм в диаметре и 400 мм длинной, привязанной обыкновенной вязальной проволокой к радиоуправляемому катеру, постановщику целей для морской пехоты. На вопрос: «Что это такое?» они ответили: «Это мини мама! Американская… мать её так, не запускается…».

Намного позже я узнал, что это Мини Мамба, весом 6,5 кг и с тягой примерно 240 N при 96000 об/мин. Разработана она была ещё в 50-х годах как вспомогательный двигатель для лёгких планеров и военных дронов. Особенность этой турбины в том, что в ней использовался диагональный компрессор. Но в авиамоделизме она широкого применения так и не нашла.

Первый «народный» летающий двигатель разработал праотец всех микротурбин Курт Шреклинг в Германии. Начав больше двадцати лет назад работать над созданием простого, технологичного и дешевого в производстве ТРД, он создал несколько образцов, которые постоянно совершенствовались. Повторяя, дополняя и улучшая его наработки, мелкосерийные производители сформировали современный вид и конструкцию модельного ТРД.

Но вернёмся к турбине Курта Шреклинга. Выдающаяся конструкция с деревянной крыльчаткой компрессора, усиленной углеволокном. Кольцевая камера сгорания с испарительной системой впрыска, где по змеевику длинной примерно в 1 м подавалось топливо. Самодельное колесо турбины из 2,5 миллиметровой жести! При длине всего в 260 мм и диаметре 110 мм, двигатель весил 700 грамм и выдавал тягу в 30 Ньютон! Это до сих пор самый тихий ТРД в мире. Потому как скорость покидания газа в сопле двигателя составляла всего 200 м/с.

На основе этого двигателя было создано несколько вариантов наборов для самостоятельной сборки. Самым известным стал FD-3 австрийской фирмы Шнайдер-Санчес.

Ещё 10 лет назад авиамоделист стоял перед серьёзным выбором - импеллер или турбина?

Тяговые и разгонные характеристики первых авиамодельных турбин оставляли желать лучшего, но имели несравненное превосходство перед импеллером - они не теряли тягу с нарастанием скорости модели. Да и звук такого привода был уже настоящим «турбинным», что сразу очень оценили копиисты, а больше всего публика, непременно присутствующая на всех полётах. Первые Шреклингские турбины спокойно поднимали в воздух 5-6 кг веса модели. Старт был самым критическим моментом, но в воздухе все остальные модели отходили на второй план!

Авиамодель с микротурбиной тогда можно было сравнить с автомобилем, постоянно двигающимся на четвёртой передаче: ее было тяжело разогнать, но зато потом такой модели не было уже равных ни среди импеллеров, ни среди пропеллеров.

Надо сказать, что теория и разработки Курта Шреклинга способствовали к тому, что развитие промышленных образцов, после издания его книг, пошло по пути упрощения конструкции и технологии двигателей. Что, в общем то, и привело к тому, что этот тип двигателя стал доступным для большого круга авиамоделистов со средним размером кошелька и семейного бюджета!

Первые образцы серийных авиамодельных турбин были JPX-Т240 французской фирмы Vibraye и японская J-450 Sophia Precision. Они были очень похожи как по конструкции, так и по внешнему виду, имели центробежную ступень компрессора, кольцевую камеру сгорания и радиальную ступень турбины. Французская JPX-Т240 работала на газе и имела встроенный регулятор подачи газа. Она развивала тягу до 50 N, при 120.000 оборотах в минуту, а вес аппарата составлял 1700 гр. Последующие образцы, Т250 и Т260 имели тягу до 60 N. Японская София работала в отличие от француженки на жидком топливе. В торце ее камеры сгорания стояло кольцо с распылительными форсунками, это была первая промышленная турбина, которая нашла место в моих моделях.

Турбины эти были очень надёжными и несложными в эксплуатации. Единственным недостатком были их разгонные характеристики. Дело в том, что радиальный компрессор и радиальная турбина относительно тяжелы, то есть имеют в сравнении с аксиальными крыльчатками большую массу и, следовательно, больший момент инерции. Поэтому разгонялись они с малого газа на полный медленно, примерно 3-4 секунды. Модель реагировала на газ соответственно ещё дольше, и это надо было учитывать при полётах.

Удовольствие было не дешевым, одна София стоила в 1995 году 6.600 немецких марок или 5.800 «вечно зелёных президентов». И надо было обладать очень хорошими аргументами, что бы доказать супруге, что турбина для модели намного важнее, чем новая кухня, и что старое семейное авто может протянуть ещё пару лет, а вот с турбиной ждать ну никак нельзя.

Дальнейшим развитием этих турбин является турбина Р-15, продаваемая фирмой Thunder Tiger.

Отличие её в том, что крыльчатка турбины у неё теперь вместо радиальной - аксиальная. Но тяга так и осталась в пределах 60 N, так как вся конструкция, ступень компрессора и камера сгорания, остались на уровне позавчерашнего дня. Хотя по своей цене она является настоящей альтернативой многим другим образцам.


В 1991 году два голландца, Бенни ван де Гур и Хан Еннискенс, основали фирму AMT и в 1994 г выпустили первую турбину 70N класса - Pegasus. Турбина имела радиальную ступень компрессора с крыльчаткой от турбонагнетателя фирмы Garret, 76 мм в диаметре, а также очень хорошо продуманную кольцевую камеру сгорания и аксиальную ступень турбины.

После двух лет тщательного изучения работ Курта Шреклинга и многочисленных экспериментов они добились оптимальной работы двигателя, установили пробным путём размеры и форму камеры сгорания, и оптимальную конструкцию колеса турбины. В конце 1994 года на одной из дружеских встреч, после полётов, вечером в палатке за бокалом пива, Бенни в разговоре хитро подмигнул и доверительно сообщил, что следующий серийный образец Pegasus Mk-3 «дует» уже 10 кг, имеет максимальные обороты 105.000 и степень сжатия 3,5 при расходе воздуха 0,28 кг/с и скорости выхода газа в 360 м/с. Масса двигателя со всеми агрегатами составляла 2300 г, турбина была 120 мм в диаметре и 270 мм длиной. Тогда эти показатели казались фантастическими.

По существу, все сегодняшние образцы копируют и повторяют в той или иной степени, заложенные в этой турбине агрегаты.

В 1995 году, вышла в свет книга Томаса Кампса «Modellstrahltriebwerk» (Модельный реактивный двигатель), с расчётами (больше заимствованными в сокращённой форме из книг К. Шреклинга) и подробными чертежами турбины для самостоятельного изготовления. С этого момента монополия фирм-производителей на технологию изготовления модельных ТРД закончилась окончательно. Хотя многие мелкие производители просто бездумно копируют агрегаты турбины Кампса.

Томас Кампс путём экспериментов и проб, начав с турбины Шреклинга, создал микротурбину, в которой объединил все достижения в этой области на тот период времени и вольно или невольно ввёл для этих двигателей стандарт. Его турбина, больше известная как KJ-66 (KampsJetеngine-66mm). 66 мм – диаметр крыльчатки компрессора. Сегодня можно увидеть различные названия турбин, в которых почти всегда указан либо размер крыльчатки компрессора 66, 76, 88, 90 и т.д., либо тяга - 70, 80, 90, 100, 120, 160 N.

Где-то я прочитал очень хорошее толкование величины одного Ньютона: 1 Ньютон – это плитка шоколада 100 грамм плюс упаковка к ней. На практике часто показатель в Ньютонах округляют до 100 грамм и условно определяют тягу двигателя в килограммах.

Конструкция модельного ТРД


  1. Крыльчатка Компрессора (радиальная)
  2. Спрямительная система Компрессора (статор)
  3. Камера сгорания
  4. Спрямительная система турбины
  5. Колесо турбины (аксиальная)
  6. Подшипники
  7. Туннель вала
  8. Сопло
  9. Конус сопла
  10. Передняя крышка Компрессора (диффузор)

С чего начать?

Естественно у моделиста сразу возникают вопросы: С чего начать? Где взять? Сколько стоит?

  1. Начать можно с наборов (Kit-ов). Практически все производители на сегодняшний день предлагают полный ассортимент запасных частей и наборов для постройки турбин. Самыми распространёнными являются наборы повторяющие KJ-66. Цены наборов, в зависимости от комплектации и качества изготовления колеблются в пределах от 450 до 1800 Евро.
  2. Можно купить готовую турбину, если по карману, и вы умудритесь убедить в важности такой покупки супругу, не доводя дело до развода. Цены на готовые двигатели начинаются от 1500 Евро для турбин без автостарта.
  3. Можно сделать самому. Не скажу что это самый идеальный способ, он же не всегда самый быстрый и самый дешёвый, как на первый взгляд может показаться. Но для самодельщиков самый интересный, при условии, что есть мастерская, хорошая токарно-фрезерная база и прибор для контактной сварки также имеется в наличии. Самым трудным в кустарных условиях изготовления является центровка вала с колесом компрессора и турбиной.

Я начинал с самостоятельной постройки, но в начале 90-х просто не было такого выбора турбин и наборов для их постройки как сегодня, да и понять работу и тонкости такого агрегата удобней при его самостоятельном изготовлении.

Вот фотографии самостоятельно изготовленных частей для авиамодельной турбины:

Кто желает поближе ознакомится с устройством и теорией Микро-ТРД, тому я могу только посоветовать следующие книги, с чертежами и расчётами:

  • Kurt Schreckling. Strahlturbine fur Flugmodelle im Selbstbau. ISDN 3-88180-120-0
  • Kurt Schreckling. Modellturbinen im Eigenbau. ISDN 3-88180-131-6
  • Kurt Schreckling. Turboprop-Triebwerk. ISDN 3-88180-127-8
  • Thomas Kamps Modellstrahltriebwerk ISDN 3-88180-071-9

На сегодняшний день мне известны следующие фирмы, выпускающие авиамодельные турбины, но их становится всё больше и больше: AMT, Artes Jet, Behotec, Digitech Turbines, Funsonic, FrankTurbinen, Jakadofsky, JetCat, Jet-Central, A.Kittelberger, K.Koch, PST- Jets, RAM, Raketeturbine, Trefz , SimJet, Simon Packham, F.Walluschnig, Wren-Turbines. Все их адреса можно найти в Интернете.

Практика использования в авиамоделизме

Начнём с того, что турбина у вас уже есть, самая простая, как ей теперь управлять?

Есть несколько способов заставить работать ваш газотурбинный двигатель в модели, но лучше всего сначала построить небольшой испытательный стенд наподобие этого:

Ручной старт (Manual start ) - cамый простой способ управления турбиной.

  1. Турбина сжатым воздухом, феном, электрическим стартером разгоняется до минимальных рабочих 3000 об/мин.
  2. В камеру сгорания подаётся газ, а на свечу накаливания - напряжение, происходит воспламенение газа и турбина выходит на режим в пределах 5000-6000 об/мин. Раньше мы просто поджигали воздушно-газовую смесь у сопла и пламя «простреливало» в камеру сгорания.
  3. На рабочих оборотах включается регулятор хода, управляющий оборотами топливного насоса, который в свою очередь подаёт в камеру сгорания горючее - керосин, дизельное топливо или отопительное масло.
  4. При наступлении стабильной работы подача газа прекращается, и турбина работает только на жидком топливе!

Смазка подшипников ведётся обычно с помощью топлива, в которое добавлено турбинное масло, примерно 5%. Если смазочная система подшипников раздельная (с масляным насосом), то питание насоса лучше включать перед подачей газа. Отключать его лучше в последнюю очередь, но НЕ ЗАБЫВАТЬ выключить! Если вы считаете, что женщины это слабый пол, то посмотрите, во что они превращаются при виде струи масла, вытекающей на обивку заднего сиденья семейного автомобиля из сопла модели.

Недостаток этого самого простого способа управления - практически полное отсутствие информации о работе двигателя. Для измерения температуры и оборотов нужны отдельные приборы, как минимум электронный термометр и тахометр. Чисто визуально можно только приблизительно определить температуру, по цвету каления крыльчатки турбины. Центровку, как у всех крутящихся механизмов, проверяют по поверхности кожуха монетой или ногтем. Прикладывая ноготь к поверхности турбины, можно почувствовать даже мельчайшие вибрации.

В паспортных данных двигателей всегда даются их предельные обороты, например 120.000 об/мин. Это предельно допустимая величина при эксплуатации, пренебрегать которой не следует! После того как в 1996 году у меня разлетелся самодельный агрегат прямо на стенде и колесо турбины, разорвав обшивку двигателя, пробило насквозь 15-ти миллиметровую фанерную стенку контейнера, стоящего в трёх метрах от стенда, я сделал для себя вывод, что без приборов контроля разгонять самопальные турбины опасно для жизни! Расчёты по прочности показали потом, что частота вращения вала должна была лежать в пределах 150.000. Так что лучше было ограничить рабочие обороты на полном газу до 110.000 – 115.000 об/мин.

Ещё один важный момент. В схему управления топливом ОБЯЗАТЕЛЬНО должен быть включен аварийный закрывающий вентиль, управляемый через отдельный канал! Делается это для того, что бы в случае вынужденной посадки, морковно-внепланового приземления и прочих неприятностей прекратить подачу топлива в двигатель во избежание пожара.

Start c ontrol (Полуавтоматический старт).

Что бы неприятностей, описанных выше, не произошло на поле, где (ни дай бог!) ещё и зрители вокруг, применяют довольно хорошо зарекомендовавший себя Start control . Здесь управление стартом - открытие газа и подачу керосина, слежение за температурой двигателя и оборотами ведёт электронный блок ECU (E lectronic- U nit- C ontrol) . Ёмкость для газа, для удобства, уже можно расположить внутри модели.

К ECU для этого подключены температурный датчик и датчик оборотов, обычно оптический или магнитный. Кроме этого ECU может давать показания о расходе топлива, сохранять параметры последнего старта, показания напряжения питания топливного насоса, напряжение аккумуляторов и т.д. Всё это можно потом просмотреть на компьютере. Для программирования ECU и снятия накопленных данных служит Manual Тerminal (терминал управления).

На сегодняшний день самое большое распространение получили два конкурирующих продукта в этой области Jet-tronics и ProJet. Какому из них отдать предпочтение - решает каждый сам, так как тяжело спорить на тему что лучше: Мерседес или БМВ?

Работает все это следующим образом:

  1. При раскручивании вала турбины (сжатый воздух/фен/электростартер) до рабочих оборотов ECU автоматически управляет подачей газа в камеру сгорания, зажиганием и подачей керосина.
  2. При движении ручки газа на вашем пульте сначала происходит автоматический вывод турбины на рабочий режим с последующим слежением за самыми важными параметрами работы всей системы, начиная от напряжения аккумуляторов до температуры двигателя и величины оборотов.

Автоматический старт (Automatic start)

Для особо ленивых процедура запуска упрощена до предела. Запуск турбины происходит с пульта управления тоже через ECU одним переключателем. Здесь уже не нужен ни сжатый воздух, ни стартер, ни фен!

  1. Вы щёлкаете тумблером на вашем пульте радиоуправления.
  2. Электростартер раскручивает вал турбины до рабочих оборотов.
  3. ECU контролирует старт, зажигание и вывод турбины на рабочий режим с последующим контролем всех показателей.
  4. После выключения турбины ECU ещё несколько раз автоматически прокручивает вал турбины электростартером для снижения температуры двигателя!

Самым последним достижением в области автоматического запуска стал Керостарт. Старт на керосине, без предварительного прогрева на газе. Поставив свечу накаливания другого типа (более крупную и мощную) и минимально изменив подачу топлива в системе, удалось полностью отказаться от газа! Работает такая система по принципу автомобильного обогревателя, как на «Запорожцах». В Европе пока только одна фирма переделывает турбины с газового на керосиновый старт, не зависимо от фирмы производителя.

Как вы уже заметили, на моих рисунках в схему включены ещё два агрегата, это клапан управления тормозами и клапан управления уборкой шасси. Это не обязательные опции, но очень полезные. Дело в том, что у «обычных» моделей при посадке, пропеллер на маленьких оборотах является своего рода тормозом, а у реактивных моделей такого тормоза нет. К тому же, у турбины всегда есть остаточная тяга даже на «холостых» оборотах и скорость посадки у реактивных моделей может быть намного выше, чем у «пропеллерных». Поэтому сократить пробежку модели, особенно на коротких площадках, очень помогают тормоза основных колёс.

Топливная система

Второй странный атрибут на рисунках, это топливный бак. Напоминает бутылку кока-колы, не правда ли? Так оно и есть!

Это самый дешевый и надёжный бак, при условии, что используются многоразовые, толстые бутылки, а не мнущиеся одноразовые. Второй важный пункт, это фильтр на конце всасывающего патрубка. Обязательный элемент! Фильтр служит не для того, чтобы фильтровать топливо, а для того, чтобы избежать попадания воздуха в топливную систему! Не одна модель была уже потеряна из-за самопроизвольного выключения турбины в воздухе! Лучше всего зарекомендовали себя здесь фильтры от мотопил марки Stihl или им подобные из пористой бронзы. Но подойдут и обычные войлочные.

Раз уж заговорили о топливе, можно сразу добавить, что жажда у турбин большая, и потребление топлива находится в среднем на уровне 150-250 грамм в минуту. Самый большой расход конечно же приходится на старт, зато потом рычаг газа редко уходит за 1/3 своего положения вперёд. Из опыта можно сказать, что при умеренном стиле полёта трёх литров топлива вполне хватает на 15 мин. полётного времени, при этом в баках остаётся ещё запас для пары заходов на посадку.

Само топливо - обычно авиационный керосин, на западе известный под названием Jet A-1.

Можно, конечно, использовать дизельное топливо или ламповое масло, но некоторые турбины, такие как из семейства JetCat, переносят его плохо. Также ТРД не любят плохо очищенное топливо. Недостатком заменителей керосина является большое образование копоти. Двигатели приходится чаще разбирать для чистки и контроля. Есть случаи эксплуатации турбин на метаноле, но таких энтузиастов я знаю только двоих, они выпускают метанол сами, поэтому могут позволить себе такую роскошь. От применения бензина, в любой форме, следует категорически отказаться, какими бы привлекательными ни казались цена и доступность этого топлива! Это в прямом смысле игра с огнём!

Обслуживание и моторесурс

Вот и следующий вопрос назрел сам собой - обслуживание и ресурс.

Обслуживание в большей степени заключается в содержании двигателя в чистоте, визуальном контроле и проверке на вибрацию при старте. Большинство авиамоделистов оснащают турбины своего рода воздушным фильтром. Обыкновенное металическое сито перед всасывающим диффузором. На мой взгляд - неотъемлемая часть турбины.

Двигатели, содержащиеся в чистоте, с исправной системой смазки подшипников служат безотказно по 100 и более рабочих часов. Хотя многие производители советуют после 50 рабочих часов присылать турбины на контрольное техническое обслуживание, но это больше для очистки совести.

Первая реактивная модель

Ещё коротко о первой модели. Лучше всего, чтобы это был «тренер»! Сегодня на рынке множество турбинных тренеров, большинство из них это модели с дельтовидным крылом.

Почему именно дельта? Потому, что это очень устойчивые модели сами по себе, а если в крыле использован так называемый S-образный профиль, то и посадочная скорость и скорость сваливания минимальные. Тренер должен, так сказать, летать сам. А вы должны концентрировать внимание на новом для вас типе двигателя и особенностях управления.

Тренер должен иметь приличные габариты. Так как скорости на реактивных моделях в 180-200 км/ч - само собой разумеющиеся, то ваша модель будет очень быстро удаляться на приличные расстояния. Поэтому за моделью должен быть обеспечен хороший визуальный контроль. Лучше, если турбина на тренере крепится открыто и сидит не очень высоко по отношению к крылу.

Хорошим примером, какой тренер НЕ ДОЛЖЕН быть, является самый распространённый тренер – «Kangaroo». Когда Фирма FiberClassics (сегодня Composite-ARF) заказывала эту модель, то в основе концепта была заложена в первую очередь продажа турбин "София", и как важный аргумент для моделистов, что сняв крылья с модели, её можно использовать в качестве испытательного стенда. Так, в общем, оно и есть, но производителю хотелось показать турбину, как на витрине, поэтому и крепится турбина на своеобразном «подиуме». Но так как вектор тяги оказался приложен намного выше ЦТ модели, то и сопло турбины пришлось задирать кверху. Несущие качества фюзеляжа были этим почти полностью съедены, плюс малый размах крыльев, что дало большую нагрузку на крыло. От других предложенных тогда решений компоновки заказчик отказался. Только использование Профиля ЦАГИ-8, ужатого до 5% дало более-менее приемлемые результаты. Кто уже летал на Кенгуру, тот знает, что эта модель для очень опытных пилотов.

Учитывая недостатки Кенгуру, был создан спортивный тренер для более динамичных полётов «HotSpot». Эту модель отличает более продуманная аэродинамика, и летает «Огонёк» намного лучше.

Дальнейшим развитием этих моделей стал «BlackShark». Он рассчитывался на спокойные полёты, с большим радиусом разворотов. С возможностью широкого спектра пилотажа, и в то же время, с хорошими парительными качествами. При выходе из строя турбины, эту модель можно посадить как планер, без нервов.

Как видите, развитие тренеров пошло по пути увеличения размеров (в разумных пределах) и уменьшении нагрузки на крыло!

Так же отличным тренером может служить австрийский набор из бальзы и пенопласта, Super Reaper. Стоит он 398 Евро. В воздухе модель выглядит очень хорошо. Вот мой самый любимый видеоролик из серии Супер Рипер: http://www.paf-flugmodelle.de/spunki.wmv

Но чемпионом по низкой цене на сегодняшний день является «Spunkaroo». 249 Евро! Очень простая конструкция из бальзы, покрытой стеклотканью. Для управления моделью в воздухе достаточно всего двух сервомашинок!

Раз уж зашла речь о сервомашинках, надо сразу сказать, что стандартным трехкилограммовым сервам в таких моделях делать нечего! Нагрузки на рули у них огромные, поэтому ставить надо машинки с усилием не меньше 8 кг!

Подведём итог

Естественно у каждого свои приоритеты, для кого-то это цена, для кого-то готовый продукт и экономия времени.

Самым быстрым способом завладеть турбиной, это просто её купить! Цены на сегодняшний день для готовых турбин класса 8 кг тяги с электроникой начинаются от 1525 Евро. Если учесть, что такой двигатель можно сразу без проблем брать в эксплуатацию, то это совсем не плохой результат.

Наборы, Kit-ы. В зависимости от комплектации, обычно набор из спрямляющей системы компрессора, крыльчатки компрессора, не просверленного колеса турбины и спрямляющей ступени турбины, в среднем стоит 400-450 Евро. К этому надо добавить, что всё остальное надо либо покупать, либо изготовить самому. Плюс электроника. Конечная цена может быть даже выше, чем готовая турбина!

На что надо обратить внимание при покупке турбины или kit-ов – лучше, если это будет разновидность KJ-66. Такие турбины зарекомендовали себя как очень надёжные, да и возможности поднятия мощности у них ещё не исчерпаны. Так, часто заменив камеру сгорания на более современную, или поменяв подшипники и установив спрямляющие системы другого типа, можно добиться прироста мощности от нескольких сот грамм до 2 кг, да и разгонные характеристики часто намного улучшаются. К тому же, этот тип турбин очень прост в эксплуатации и ремонте.

Подведём итог, какого размера нужен карман для постройки современной реактивной модели по самым низким европейским ценам:

  • Турбина в сборе с электроникой и мелочами - 1525 Евро
  • Тренер с хорошими полётными качествами - 222 Евро
  • 2 сервомашинки 8/12 кг - 80 Евро
  • Приёмник 6 каналов - 80 Евро

Итого, Ваша мечта : около 1900 Евро или примерно 2500 зелёных президентов!

О проблеме легких двигателей для малой авиации, не писали разве что только в «желтой» прессе. Писали и год назад, и два года, и десять лет назад. Принимаются программы развития АОН, к разработке легких маломощных двигателей подключился Центральный институт авиационного моторостроения ЦИОМ им. А.В. Баранова. Принимаются правительством программы помощи производителям техники для АОН. Мелькают в печати и на телевидении самолеты отечественной разработки. Мелькают и пропадают. Где-то они летают, где-то их испытывают.

Только вот на полевых площадках и аэродромах АОН, по-прежнему Цессны, Робинсоны да Текнамы иноземные летают. А машины российской разработки, не считая конечно Яков, смотрятся скорее как диковинка. И, как и в предыдущие года, все говорят и пишут об отсутствии отечественного легкого двигателя. Почему бы, хотя бы не сделать, как делали в прежние, советские времена. Огромная страна не стеснялась взять иностранный двигатель, приспособить его под возможности нашего производства, что-то улучшить, где-то потерять в качестве, но на выходе иметь наш, отечественный двигатель, который сможет послужить образцом и прототипом для целой линейки модернизированных движков. Отечественная история развития авиации, полна подобных примеров, и даже нет смысла их здесь приводить.

А где же воз?

Итак, в огромной стране, практически не осталось инфраструктуры для производства поршневых двигателей малой мощности. Таких, которые были бы способны поднять нашу малую авиацию и поставить ее что называется «на крыло».

Однако выход есть и из этой ситуации. Выход быть может не самый быстрый, и простой, но есть. Это разработка своих, отечественных микро и минидвигателей ГТД (газотурбинный двигатель).

Огромные холдинги, консорциумы и всевозможные ФГУП (кто не знает это Федеральное Государственное Унитарное Предприятие), изучают проблему, разрабатывают концептуальные проекты, создают предприятия с иностранным участием и осваивают государственные инвестиции. Вероятно, по прошествии энного количества времени мы на выходе всех этих корпоративных усилий и получим какой-то готовый продукт.

ЦИАМ ведет НИОКР

ФГУП "Центральный институт авиационного моторостроения им. П.И.Баранова" широким фронтом ведет НИОКР создания перспективных газотурбинных и поршневых двигателей в интересах разработчиков беспилотных летательных аппаратов, самолетов и вертолетов малой авиации. "АвиаПорт" приводит систематизированное изложение выступлений начальника сектора ЦИАМ (малоразмерные ГТД) Владимира Ломазова и начальника сектора ЦИАМ (ПД) Александра Костюченкова на II международной конференции "Беспилотная авиация - 2015".

    «…Работы по перспективным поршневым двигателям

В России в настоящее время полностью отсутствует производство поршневых авиадвигателей для беспилотников и легких самолетов и вертолетов, что заставляет отечественных конструкторов применять авиадвигатели зарубежного производства. В связи с огромной потребностью в таких двигателях, ЦИАМ проводит НИОКР и прорабатывает проекты перспективных поршневых авиадвигателей в интересах их применения на беспилотных летательных аппаратах, легких самолетах и вертолетах».

    «…Основные требования к авиадвигателям

Основными критериями при создании перспективных двигателей являлись стоимость эксплуатации, назначенный межремонтный ресурс и топливная эффективность, которые в совокупности определяют расходы на летный час. Проведенные расчеты показали, что для двигателей такого класса стоимость летного часа должна быть не более 500 рублей за час полета (без учета стоимости ГСМ), технический ресурс должен составить не менее 8000 часов. При таких показателях стоимость жизненного цикла составит 3,2 млн. рублей в сегодняшних ценах».

    «…Новые технологии создания малоразмерных ГТД

ЦИАМ проводит работы по внедрению новейших технологий для снижения массы, повышения качества отдельных узлов и деталей. Подтверждено снижение себестоимости изготовления колеса компрессора почти в 20 раз против классического колеса с вставными лопатками. За счет применения современных технологий литья цена ротора уменьшена примерно в 15-18 раз по сравнению с ротором стандартной вспомогательной силовой установки такой же размерности, которая стоит на отечественных самолетах. В качестве опытного образца изготовлен и будет испытываться на стенде стартер-генератор с возможностью раскручивания до 90 тысяч оборотов, который ставится на вал без редуктора и существенно уменьшает массу двигателя. Он обеспечивает мощность до 4 кВт и имеет массу всего лишь 700 грамм, против сегодняшних 10 кг».

(по материалам портала aviaport httр://www.аviaport.ru/nеws/2015/05/08/338921.html

Лаборатория интеллектуальной механики "Аудит Аналитик" (АА+)

За этим интригующим названием, скрывается группа энтузиастов, которые разработали, создали, и в данный момент уже испытывают первый опытный образец микро ГТД.

Сергей Журавлев Генеральный директор, вдохновитель и генератор идей Лаборатории со своим детищем в руках.

Вот что говорит про свою команду Сергей Журавлев, Генеральный директор Лаборатория интеллектуальной механики "Аудит Аналитик" (АА+):

«Кто Мы?

Команда разработчиков моделей и прототипов сложных систем (экосистем), и алгоритмов управления ими, как в технической, так и в гуманитарной сферах.

Наши компетенции опираются на собственную концепцию организации научно-конструкторского сообщества, распределённого (сетевого) производства и непрерывного процесса совершенствования линейки высокотехнологичных продуктов в испытательно-монтажном комплексе. Мы не считаем нужным покупать станки и строить завод. В России уже так много избыточных производственных мощностей, и покупок новейшего оборудования, что их надо загружать работой».

Сергей полон оптимизма и здорового реализма, и у него есть для этого все основания.

«Нам выдался редкий шанс войти в мировую элиту производителей малых турбин. Минимизация и локализация, роботизация и автономия – тренды XXI века, в которые пока ещё можно встроиться на равных с лидерами энергообеспечения малого авиастроения, беспилотной авиации, локальной энергетики. В России очень сильные физическая и математическая, материаловедческая и инженерная школы. Их потенциал позволяет в минимальном объёме турбины, достичь максимальных, значений эффективности, в первую очередь эксплуатационной, малыми силами и средствами».

Опытный образец ГТД малой тяги серии МкА

Следует отметить, что разработка газотурбинных установок малой тяги лишь одно из направлений, которым занимается Лаборатория АА+, и этот проект полностью частный, и быть может именно поэтому после всех расчетов, проработок и проб, они имеют на выходе уже готовый опытный образец.

Вот так буднично, на подоконнике, на тетрадке с расчетами и схемами уместился первый опытный ГТД малой тяги марки МкА. Родоначальник серии двигателей разной мощности, которые можно будет применять в различных отраслях.

Двигатель уже проходит испытания на стенде в лаборатории. Вот некоторые его параметры, которые уже четко определены:

Основные данные опытного образца ГТД малой тяги серии МкА (микро авиационный):

    Вес – 2060 гр.

    Длина – 324.00 мм

    Диаметр основной – 115.00 мм

    Ширина с пилонами – 128.00 мм

Рабочие характеристики:

    Тяга максимальная – 200 N

    Тяга рабочая – 160 N

    Расход топлива (на макс. тяге) – 460.00 ml \ min

    Используемое топливо – керосин\дизельное топливо

    Максимальные скорость вращения – 120 000 об\мин

«Разработанный двигатель отличается от изучавшихся нашим КБ аналогов, конструктивом, материалами, характеристиками. А также заранее продуманной интеграцией в ряд изделий».

Дмитрий Рыбаков

заместитель директора по инновациям Группы компаний “Беспилотные системы”

В Группе компаний «Беспилотные системы» настолько уверены в перспективности серии двигателей разработки Лаборатории, что начали проектирование перспективного БПЛА специально под них.

Я абсолютно уверен, что через некоторое время, мы увидим, легкие, мощные и экономичные двигатели Лаборатории АА+ не только на легких самолетах, автожирах и вертолетах, но и на большой авиационной технике.

В заключении хотелось бы привести еще одно высказывание Сергея Журавлева.